

Development of High Seismic Performance Pipe for Crossing Active Faults

Introduction

Main active faults in Japan

"A"class fault

Fault Displacement Less than 1m 1m-3m 3m-5m More than 5m 286 71 6 21 Fault Type Nomal **Sinistral** Reverse **Dextral** 219 31 103 **65** Fault dip - 45° 30° 45° - 60° More than Less than **30° 60°** 145 14 91

Existing measures

Piping with flexible joint-pipes method

Existing measures

Piping in tunnel method

It is difficult for the local waterworks bureaus to adopt these methods, as they are both costly.

We need to develop a seismic-protected pipeline crossing a fault, which is optimal from the economical point of view .

Development of High Seismic Performance Pipe

• In order to reduce the cost, the wall thickness of the pipe module is same with the pipeline.

- Only one time deformation is considered, as the interval of earthquakes is long enough.
 - The plastic deformation or bucking is allowable, but the crack initiation or leakage is not.

It may cause the cracks in the pipes

Shape of pipe module

Control the deformation by initial deformation

Concentrate deformation on P-module

Wave shape comes in contact $\rightarrow \theta$ max

Results of analysis- Distribution of strain

M-θ (L=1.5Lw,t=6mm)

Seismic behavior of the pipeline system $\sum_{r\in I}$

Experimental Study

Experimental Device

Result of Experiment

More than 30° but no crack

Conclusion

P-module can

 absorb fault displacement by controling deformation

- ensure plastic deformation of the pipe without crack initiation or leakage

- secure the minimum water supply after a large earthquake

Thank you for your attention.