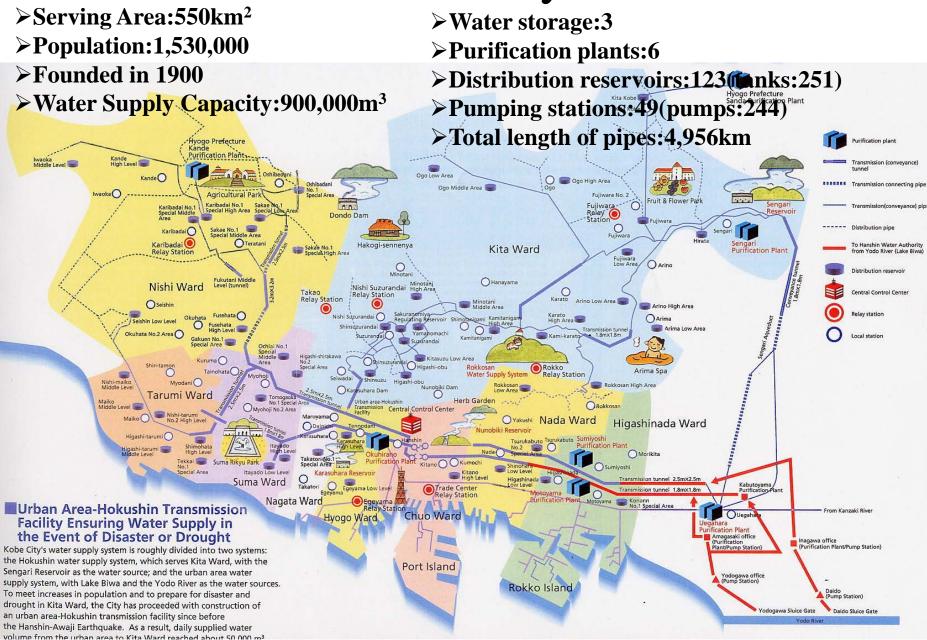
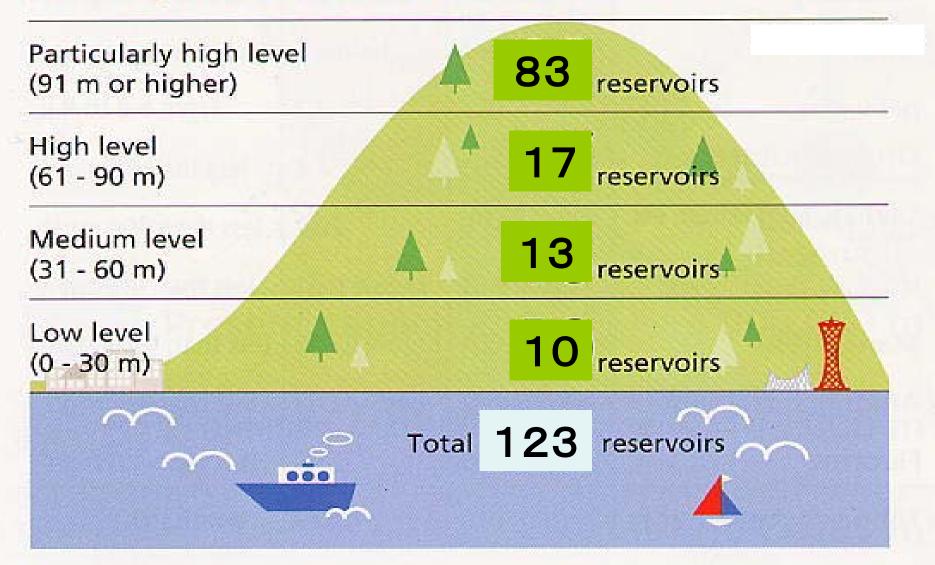
A Reasonable Approach to the Seismic Assessment of Water Supply Facilities

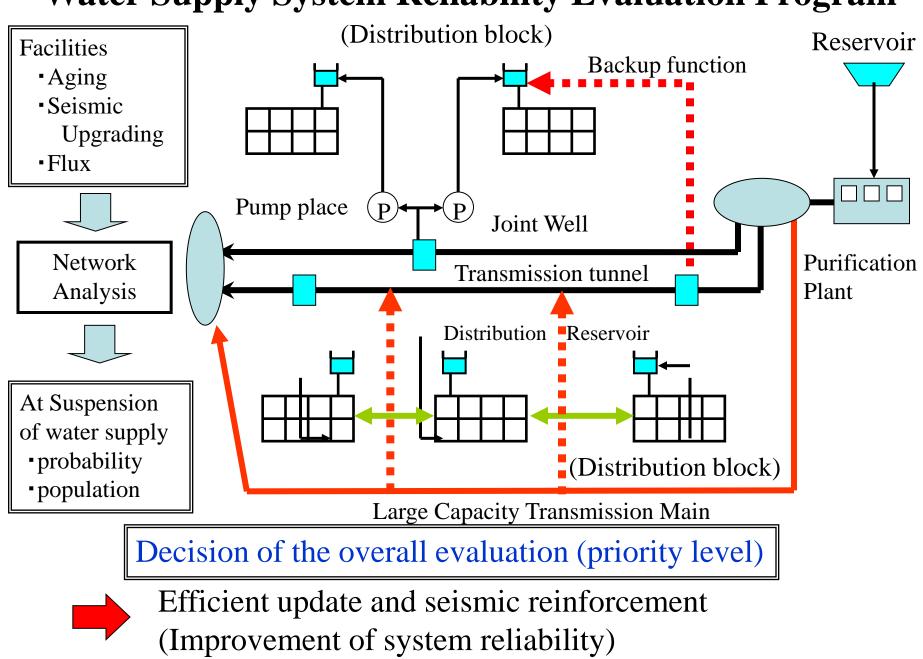
Hayato YOKONO Kobe City Waterworks Bureau,Japan


Contents

- **1.** Background (Introduction)
- **2**. Seismic Assessment Procedures
- **3. Determining the Condition of Existing Facilities**
- **4.** Setting of Design Input Seismic Motions
- **5.** Analysis of Ground/Structual Properties
- 6. Setting a Two-Dimensional Model
- 7. Seismic Assessment
- 8. Conclusion

Location of Kobe City


Kobe Water System



Kobe Water System

Water Distribution System by Elevation

(Relationship between elevation and number of distribution reservoirs)

Water Supply System Reliability Evaluation Program

SEISMIC ASSESSMENT PROCEDURES

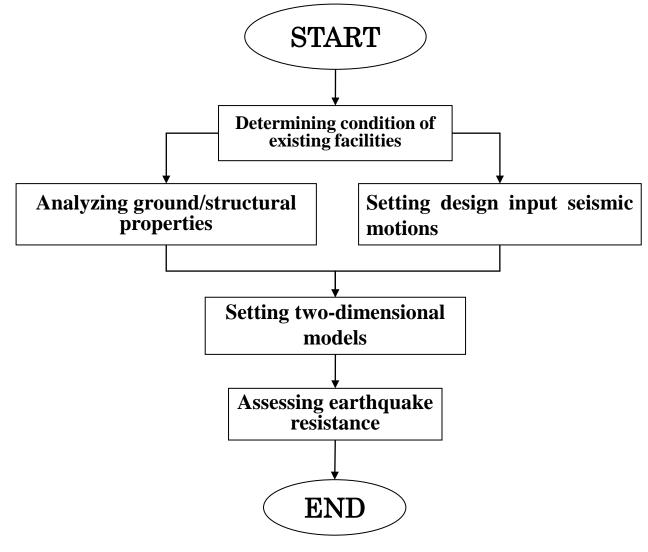
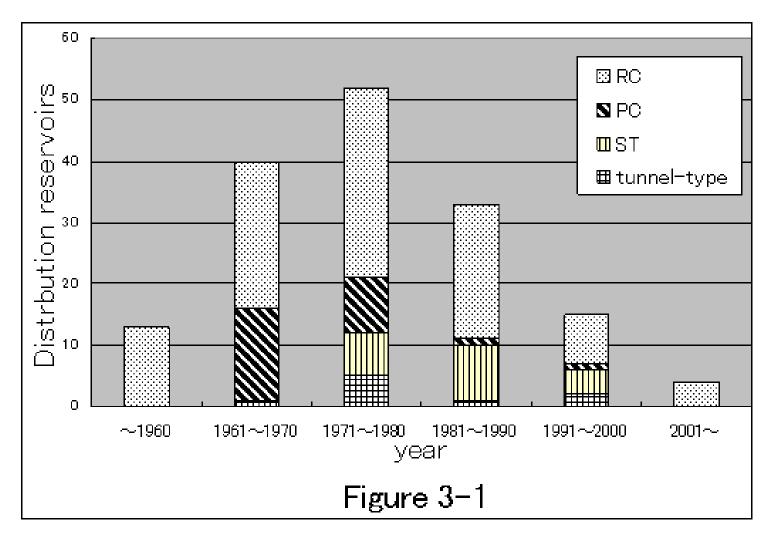



Figure 2-1

DETERMINING THE CONDITION OF EXISTING FACILITIES

SETTING OF DESIGN INPUT SEISMIC MOTIONS

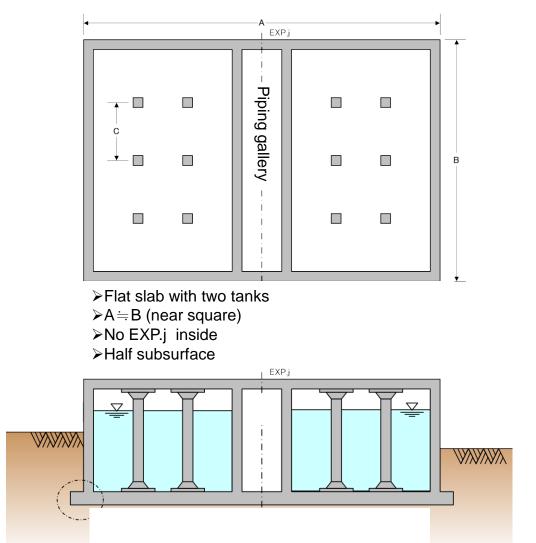
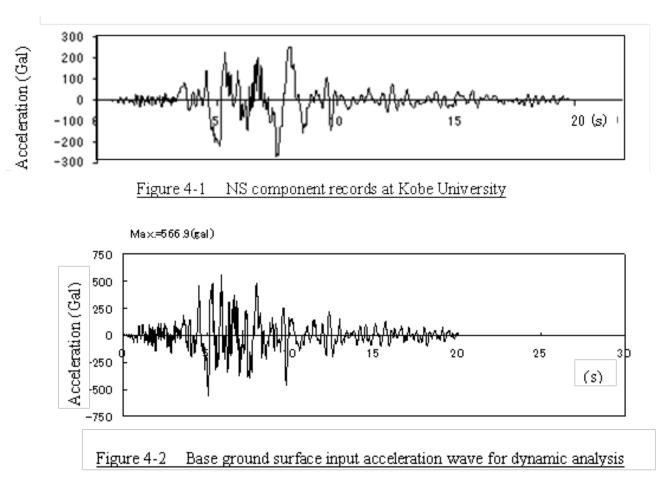



Figure Standard structure configuration of RC distribution reservoir

SETTING OF DESIGN INPUT SEISMIC MOTIONS

(1) Preparation of Base Ground Surface Input Waveforms

(2) Dynamic Characteristics of Structures

[Analysis conditions]

- Foundation structure: Spread foundation
- Foundation ground: N value; 50
- Relaid soil: N value; 10 (sandy soil)
- Inside water level: High water level
- Elements: See figure at right

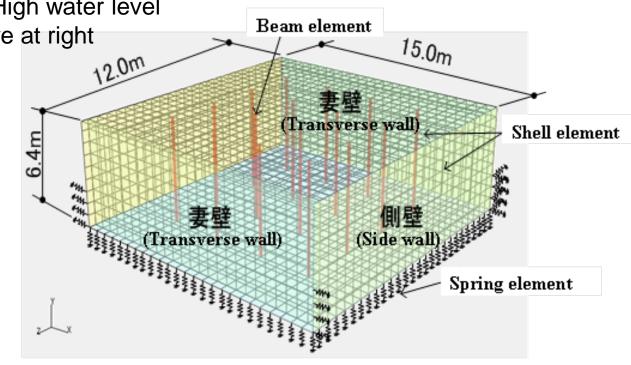


Figure 4-3

(2) Dynamic Characteristics of Structures

	Deck slab	Upper slab	Side wall	Transverse wall	
Plate thickness t (mm)	550	300	550	550	
Young's modulus E (kN/m ²)	2.500E+07	2.500E+07	2.500E+07	2.500E+07	
Poisson's ratio v	0.2	0.2	0.2	0.2	

 Table 4-1 Input physical properties of the building (shell element)

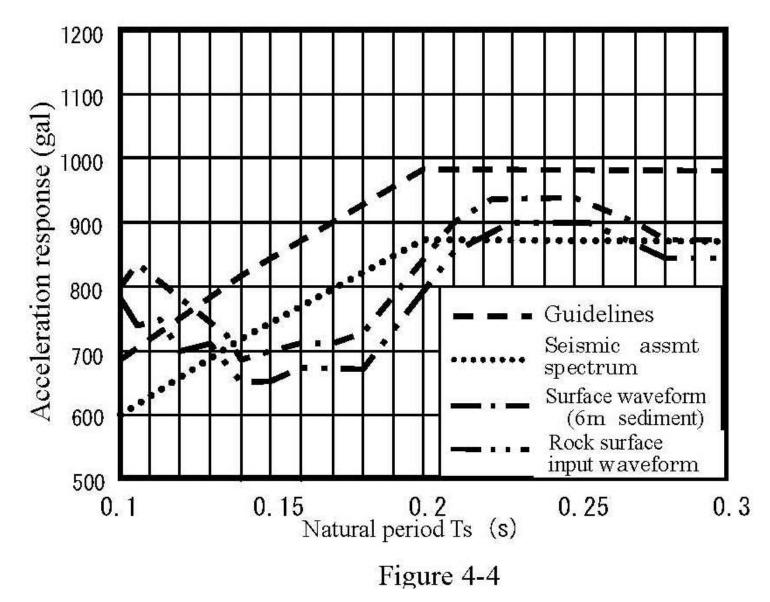
Table 4-2 Input physical properties of the center pillar (beam element)

Young's modulus E (kN/m ²)	2.500E+07
Cross section A (m ²)	0.25
Torsional constant J (m ⁴)	8.788E-03
Geometrical moment of inertia $Iy = Iz (m^4)$	5.208E-03

Table 4-3 Input physical properties of the ground (spring element)

		Deck slab	Side wall	Transverse wall (end side)
Coefficient of	X direction	29404	17713	5111
subgrade reaction ^{*2}	Y direction	102912	5061	5111
(kN/m ³)	Z direction	29404	5061	17888

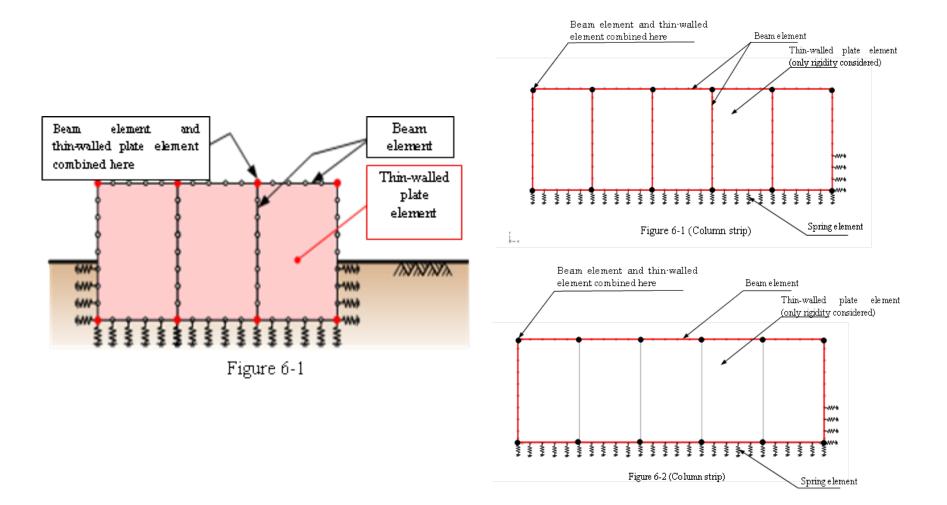
(2) Dynamic Characteristics of Structures


Table 4-4

		Natural period (s)		
		With fill soil	Without fill soil	
Vibration	X direction	0.1398	0.1272	
direction	Y direction	0.1576	0.1394	

Table 4-5

		Damping co	efficient (%)
		With fill soil	Without fill soil
Vibration	X direction	15.4	14.8
direction	Y direction	14.8	14.5


(3) Earthquake Response Analysis

ANALYSIS OF GROUND/STRUCTURAL PROPERTIES

Table 5-1

Analysis cases	Parameters			
Case 1		Design water level		
Case 2	Water level	Operational water level		
Case 3		N=10		
Case 4		N=30		
Case 5	Fill soil	Yes / No		
Case 6	Unsymmetrical earth pressure	Yes / No		
Case 7	Embedment	Yes / No		
Case 8	Dimensions in planning	L/B=1.4		
Case 9	X Ratio of the space between transverse	L/B=2.2		
Case 10	(gable) walls (L) to the width of transverse(gable) walls (B)	L/B=3.0		

No.	Physical properties of th	Domorita	
INO.	Young's modulus E ₂	Plate thickness	Remarks
1	E_{c}^{*}	t _{eq} **	
2	0.5 • E _c	t _{eq}	
3	0.2 • E _c	t _{eq}	
4	0.1 • E _c	t _{eq}	
5	0.05 • E _c	t _{eq}	
6	0.02 • E _c	t _{eq}	
7	0	0	No thin-walled plate element

Here, Ec (Young's modulus for the building's concrete) = 2.5×107 kN/m2, and (equivalent plate thickness of the transverse wall) is calculated using the following equation:

$$t_{eq} = \frac{2 \times t_w}{B} = \frac{2 \times 0.55}{18.8} = 0.0585$$
 (m)

where (thickness of the transverse wall) = 0.55 (m), and (space between transverse walls, or depth of the structure) = 18.8 (m).

Table 6-2 Conditions	of the	structures
----------------------	--------	------------

	Deck slab	Upper slab	Sidewall	Transverse wall	Center pillar
Geometrics (mm)	Plate thickness t = 550	Plate thickness $t = 300$	Plate thickness t = 550	Plate thickness t = 550	500 × 500 ctc3650
Young's modulus E (kN/m ²)	2.500E+07	2.500E+07	2.500E+07	2.500E+07	2.500E+07
Unit weight γ (kN/m ³)	24.5	24.5	24.5	24.5	24.5
Poisson's ratio ν	0.2	0.2	0.2	0.2	0.2

Table 6-3 Coefficient of subgrade reaction (kN/m^3)

		Lower part of deck slab	Sidewall	Transverse wall (end side)
	X direction	5758		
Under stationary load	Y direction	20153		
	Z direction	5758		
Under incremental	X direction	11516	17957	5181
load during	Y direction	40307	5131	5181
earthquake	Z direction	11516	5131	18135

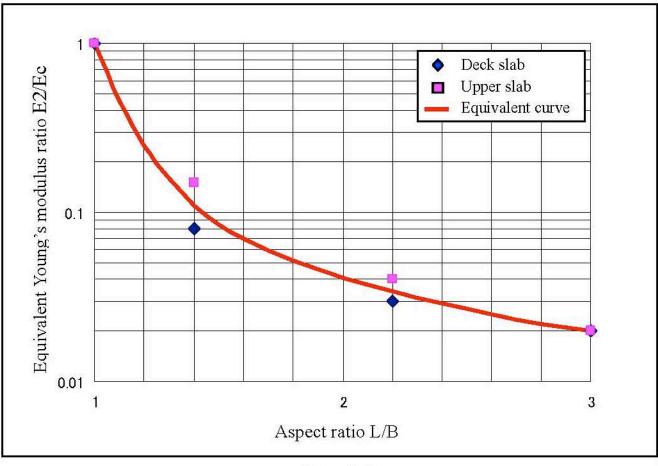


Figure 6-3

 Table
 Seismic assessment of RC distribution reservoir according to group(1)

G	roup	Evaluation method	Reason for grouping
Standard flat slab (above ground type) (pillar of two rows or more)	A-1-1-1(on the base ground surface, hard ground) (17) A-1-1-2(on the surface ground, hard ground) (19)	Comparative assessment based on result of analyzing representative facilities	Almost the same structural characteristic
	A-1-1-3(usual ground)	Detailed analysis of each facilities	Different seismic force condition in each facilities.
Standard flat slab (underground type)	A-1-2 (10)	Comparative assessment based on result of analyzing representative facilities	Almost the same structural characteristic
Standard flat slab (Small scale) (Pillar of one row or less)	A-2 (16)	Comparative assessment based on result of analyzing representative facilities	Almost the same structural characteristic
Wall construction without pillar and the similar	A-3-1 (wall-type) (4)	Comparative assessment based on result of analyzing representative facilities	Almost the same structural characteristic
	A-3-2 (similar to wall-type)	Technological evaluation of each facilities	Various structure characteristics & Data shortage

Group		Evaluation method	Reason for grouping
Pillar foundation structure with deck slab jointed	A-4	Technological evaluation of each facilities	Various structure characteristics & Data shortage
Similar structure to flat slab	A-5-1(Structure reinforced edge of deck or upper slab) A-5-2(Excluding the above-mentioned) A-8-1(Special condition)		
Composite structure	A-6	Undiagnosis	Special structure
Level 2 design structure	A-7	Undiagnosis	The latest design standard

Technical assessment of earthquake performance (for each group) Analysis results of representative facilities---OK Analysis results of representative facilities---NG Estimated bending moment Estimated bending moment generated

Figure7-1

Table Seismic Assessment Result

	Total	NG	ОК	Undiagnosis
RC	184	65(36%)	109(59%)	10(5%)
PC	29	21(72%)	8(28%)	0
ST	26	0	26(100%)	0
Tunnel-type	12	2(17%)	10(83%)	0
Total	251	88(35%)	153(61%)	10(4%)

Thank you

Sunset with AKASHI Strait Bridge from Kobe Airport

E-mail:hayato_yokono@office.city.kobe.lg.jp