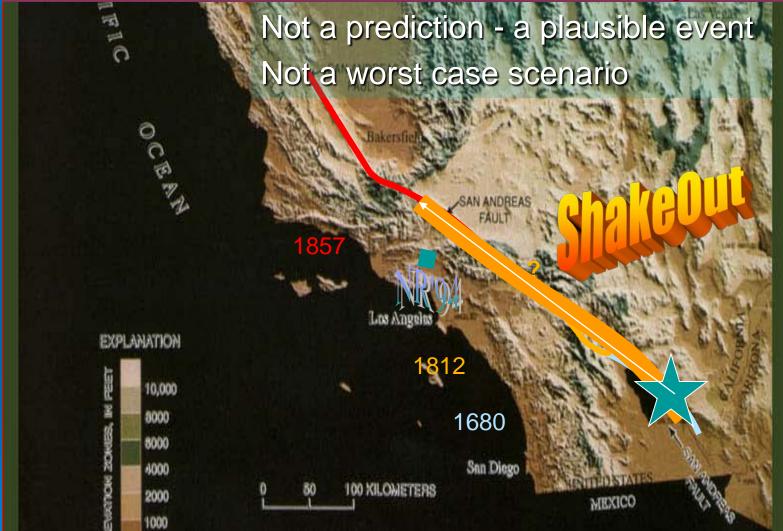
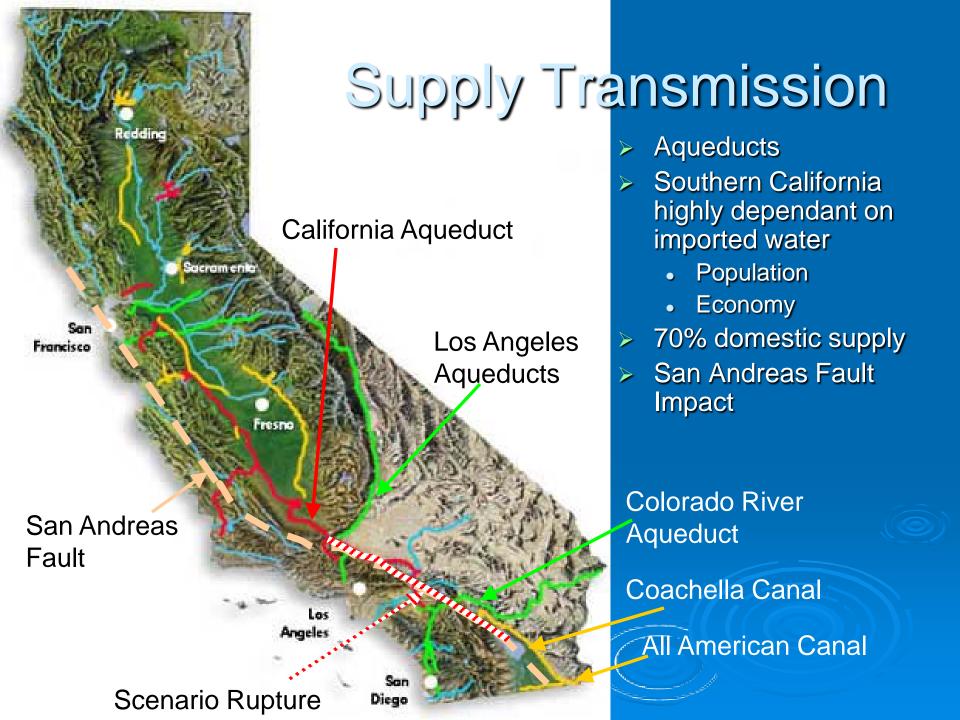
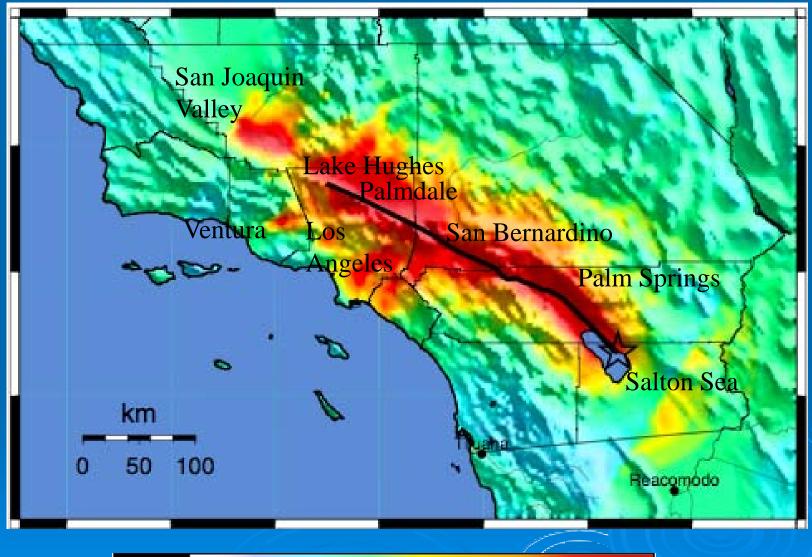
Simulation of Los Angeles Water Supply and Distribution in Response to M7.8 San Andreas Earthquake


Craig A. Davis, Ph.D. Los Angeles Department of Water and Power Geotechnical Engineering Manager


Presentation Outline

Earthquake Scenario Description
 Regional Water Supply Impacts
 LADWP Water System Impacts


ShakeOut Scenario Earthquake

Recurrence Interval ~150 years without latest 'open' interval
Currently, elapsed time of ~ 300 years appears longer than any previous recurrence interval

Shaking Intensity

SHAKING: WEAK STRONG SEVERE

Los Angeles Aqueducts 3.3 m movement Elizabeth tunnel (2.9 m dia.)

California Aqueduct East Branch 3 to 5 m movement Embankment levees, pipes, tunnels 3+ locations

Fault Rupture

<u>Colorado River Aqueduct</u> 0.5 to 1.3 m fault slip 4 locations, close proximity 4m+ total uplift Ripes, Tunnels

~5 m ~3 m 9 m

Coachella Canal 7 to 9 m movement 3 locations Levees ruptured

Complete Disruption of Import Water!

Aqueduct Historical Earthquake Damage

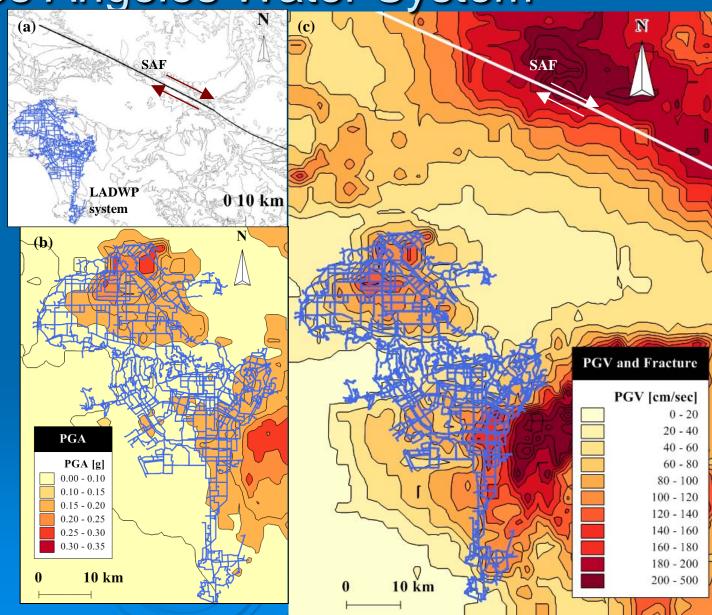
Tunnel lining failure 1995 Kobe Japan Earthquake

3 m right-lateral fault movement, 2.2 m diameter pipe 1999 Izmit Turkey Earthquake

Local Storage and

Aqueduct Restoration Estimates

> 6 months local storage (MWD, 2005 estimate)

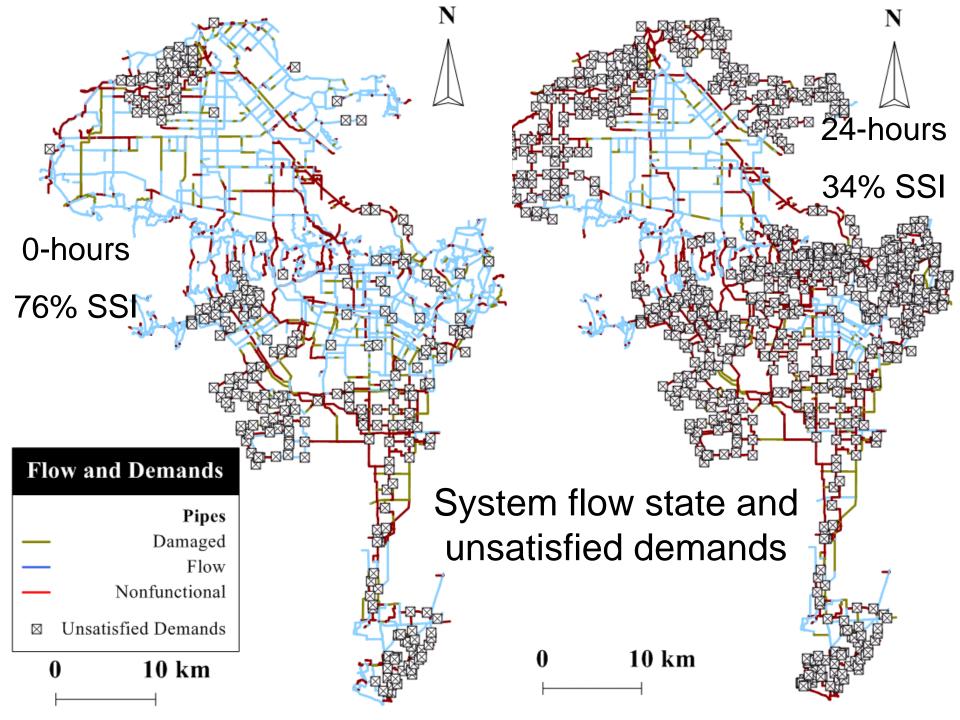

- Not available to all
- Severe rationing, 25% minimum
- Ground water over draft
 - Environmental concerns
- Aqueducts restored 4 to 18 months (minimum)

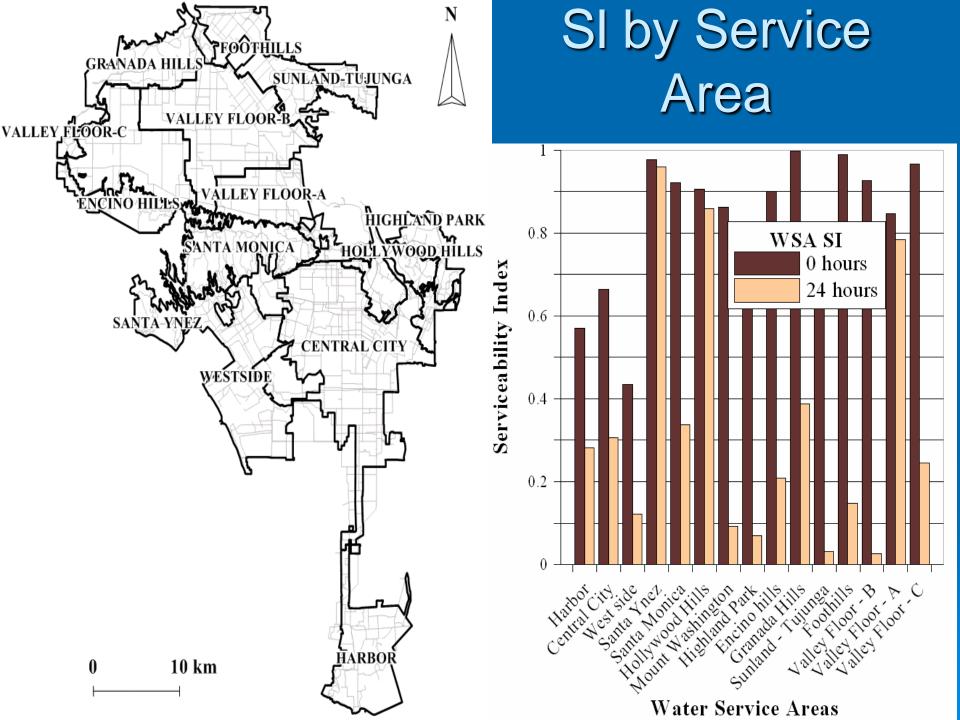
Inadequate Supplies!!

D	Task Name	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	Month 9	Month 10	Month 11	Month 12	Month 13	Month 14	Month 15	Month 16	Month 17	Month 18	Month 19
1	ShakeOut Scenario Earthquake	•																		
2	Los Angeles Aqueduct	-														2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				-
3	Elizabeth Tunnel								1				1							
4	Pipes and channels																			
5	LAA in-service (earliest est.)																			+
6	California Aqueduct	-																		
7	Main line to E & W Branches				1		JA V	ves	st B	rano	ch r	est	ore	d al	opro	DX.	4 m	nont	ins	
8	West Branch							_						_						
9	West Branch in-service					+/	All c	othe	r lir	nes	out	of	ser	/ice	at	lea	st 1	-ye	ar	
10	East Branch				1	-			1		-	1								
11	East Branch in-service													+						
12	Colorado River Aqueduct																			
13	Fault crossing								:			1	1			1				
14	Conduits and channels																			
15	CRA in-service																•			

Scenario Response Los Angeles Water System

- 50 miles from San Andreas Fault
- LA Scenario impacts:
- Large PGV
 - 200 cm/s
- Small PGA
 - 0.3g
- Long shaking duration
 - 1 minute
- Significant pipe damage
 - Large ground strain
- Limited damage to other components




LADWP Water System

- > 85% supply from aqueducts: LAA, CRA, CA-A
 35 MWDSC connections
- > 15% supply from local ground water
- > 7,230 miles (11,640 km) distribution and trunk pipes
- > 108 tanks and reservoirs
 - Largest in-system storage in world
- Serves 4.1 million people + business and industry
 - Approximately 20% of affected population in Shakeout Scenario

ShakeOut Scenario Impacts

- Graphical Iterative Response Analysis for Flow Following Earthquakes (GIRAFFE)
 - System simulation, statistical (Monte Carlo)
 - Cornell University-LADWP Collaboration
- > 2,700 pipe repairs
 - 193 breaks
 - 2471 leaks
 - For comparison: 1,100 repairs in 1994
- System Serviceability Index (SSI)
 - ratio of water available at all system nodes after the earthquake to water available before the earthquake
 - SSI = 76% at 0-hours
 - SSI = 34% in 24-hours
 - 9 66% of normal water demand not met
 - Severe deterioration in the ability to deliver water results from damaged and leaking pipelines
 - Does not account for fire demand

Restoration

- Lengthy process (months)
- Local storage loss
 - leaky pipes drain tanks and reservoirs in days
- SSI continues to decline until local emergency supplies instated and regional supplies restored
- Water purification notices
- Complete restoration cannot be achieved until aqueducts restored (15+ months)
 - DWR & MWD disperse supplies to many agencies
 - Agencies dependent upon others abilities
- Restoration time exceeds local supply capabilities
 - Up to 30% can be met with groundwater
- Severe water rationing mandates
 - (25% to 70%)

Recovery Kobe Japan Example

	Week 1	Week 2	Weeks 3 & 4	Week 5
Key word	Want to know	Irritation	Anxiety, impatience	Anger
Contents	Situation? Tank truck? Recovery date?	Want to take a bath	Water supply is insufficient	Very tired and exhausted

In Japan tolerance < 5 weeks
 Not sure Southern California society is as tolerable!

Regional Economics

\$213.3 Billion total losses estimated

\$87 Billion loss from fire

40% of total

\$53 Billion business interruption loss from water

25% of total

55% of all business interruption

Assumes all aqueducts restored in 6 months

Business interruption losses may be greatly underestimated

Assumed 6 month aqueduct restoration

Water + fire account for great majority of losses

Summary

- Earthquake effects to water supply & distribution systems has greatest impact of all aspects considered in ShakeOut
- Economy cannot fully recover without water
 - Ports cannot operate without potable water
 - Food services, grocery stores, etc.
 - Some Industry dependent on water
 - People just can't live without water
- Regional interdependency
 - All agencies must prepare and work together to protect our health, safety, and welfare from this and other scenario disasters

Proposed Policies from Scenario Evaluation

Policies can be made to improve earthquake resilience

- Boil Water Notice → Tap Water Safety Notice
- Develop Supply Agency Coordination Team
 - e.g. DWR, LADWP, MWDSC
 - Coordinate repairs to priority aqueducts, depending on actual damage
 - Can also work together to prioritize & implement pre-earthquake mitigations
 - Set up mutual assistance agreements

Questions?

