

Hydraulic Performance Analysis of Water Systems under Major Earthquakes

Karl Gee-Yu Liu and Hsiang-Yuan Hung

National Center for Research on Earthquake Engineering (NCREE), Taiwan

for

The Sixth Taiwan-US-Japan Workshop on Water System Seismic Practices 14-15 October, 2009, Taipei, Taiwan

Acknowledgment

- National Science Council, Taiwan funding through Grant No. NSC-96-625-Z-492-007 (2007)
- Taipei Water department hydraulic analysis data of its water system

Backgrounds

- 1906 SF earthquake, 1923 Kanto earthquake,...
- 1994 Northridge, 1995 Kobe, 1999 Izmit, Turkey and Chi-Chi, Taiwan earthquakes,...
 - ~ late 80': connectivity analysis
 - 90'~: hydraulic network analysis
- **EPANET** software (US Environmental Protection Agency, 2000)
- **GIRAFFE** software (Graphical Iterative Response Analysis of Flow Following Earthquakes; developed at Cornell University by O'Rourke et al., 2006)

Probabilities of occurrence of pipe break or leak for various pipe materials (GIRAFFE model, 1/3)

Damage type		Cast iron	Ductile iron	Riveted steel	Welded steel	Jointed concrete
Leak		0.8	0.8	0.8	0.2	0.8
Break	• *	0.2	0.2	0.2	0.0	0.2

Probabilities of occurrence of different pipe leak models for various pipe materials (GIRAFFE model, 2/3)

Pipe leak model		Cast iron	Ductile iron	Riveted steel	Welded steel	Jointed concrete
Annular disengagement		0.3	0.8	0.6	-	1.0
Round crack		0.5	-	-	-	-
Longitudinal Crack		0.1	0.1	0.3	-	-
Local loss of pipe wall		0.1	0.1	0.1	-	-
Local tear of pipe wall at welded slip joint	+ +	-	-	-	1.0	-

Parameters of various types of leak (GIRAFFE model, 3/3)

Pipe leal	k model	Diameter of the fictitious pipe	Values of parameters		
Annular disengagement		$2\sqrt{tkD}$	k = 0.3 $t = 10$ mm		
Round crack		$\sqrt{2\theta}D$	$\theta = 0.5^{\circ} = 0.00873$		
Longitudinal Crack		$2\sqrt{LD\theta/\pi}$	$\theta = 0.1^{\circ} = 0.00175$		
Local loss of pipe wall		$2\sqrt{k_1k_2}D$	$k_1 = k_2 = 0.05$		
Local tear of pipe wall at welded slip joint		$2\sqrt{kWD}$	k = 0.3 $W = 12$ mm		

Hydraulic analysis of pressurized pipe flows by EPANET

Unknowns

- Nodal heads: h_i (no. = N)
- Pipe flows: q_{ij} (no. = N_P)

N nodes + N_P pipes

Governing equations

- Continuity (no. = N, linear in q_{ij})
- Flow headloss relation: the change in the heads of two end nodes of a pipe (no. = N_P , nonlinear in q_{ij})

The steps to model a pipe break hydraulically in the EPANET input file

- 1. Decide the location and elevation of pipe break point
- 2. Remove the original link (pipe segment)
- 3. Add two new nodes A and B at the location of pipe break point
- 4. Add two new links connecting the original pipe segment ends to A and B, respectively
- 5. Add two new nodes A' and B' with the elevation of pipe break point and designate them as reservoirs
- 6. Add two new links connecting A-A' and B-B' and specify them with one-way check valves, respectively

The steps to model a pipe leak hydraulically in the EPANET input file

- 1. Decide the location and elevation of pipe leak point
- 2. Remove the original link (pipe segment)
- 3. Add a new node A at the location of pipe leak point
- 4. Add two new links connecting the original pipe segment ends to A
- 5. Add a new node A' with the elevation of pipe leak point and designate it as a reservoir
- 6. Add a **new link** connecting A and A' and specify it (1) as a **fictitious pipe with a diameter** of corresponding pipe leak model, and (2) with a one-way check valve

Merits of the proposed approach to generate damage points

- The probability of being damaged of any pipe segment is rigorously consistent with its expected value (number of damages)
- It allows a varying repair rate along a pipe (of considerable length or crossing sites of different soil conditions...)
- It generates pipe damages with a total number exactly the same as the expected value

Flowchart for performance analysis

Negative pressure

- Low pressure: causing extra problems in fire-fighting, sanitation
- Negative pressure: theoretically impossible in pipes not air-tight (eg. broken pipes)
- Past approaches:
 - o Ballantyne (1990)
 - o Shinozuka (1992)
 - o *Markov* (1994)

 \cap

o O'Rourke et al. (2006)

The water system of the Taipei Water Department (TWD)

- Service region: 434 square kilometer, including the whole Taipei City plus 4 most populated cities of the Taipei County, divided into 10 service areas
- Serving 1.51 million customers or 3.85 million people
- Daily water supply: 2.5 million tons
- Total pipe length: 7,153 Km (including customer pipes)

	Nodes	Pipes	Pumps	Tanks	Reservoirs	Pipe Length (m)
01	3,254	3,376	40	10	0	171,359
02	2,289	2,366	18	3	0	102,684
03	4,288	4,421	27	2	0	143,565
04	1,769	1,822	18	2	0	68,446
05	2,591	2,673	10	2	0	116,349
06	3,691	3,796	17	2	0	142,553
07	4,985	5,127	32	3	1	193,524
08	2,338	2,394	5	1	0	98,039
09	587	601	12	2	0	28,829
10	2,716	2,799	20	3	0	130,933
Total	28,508	29,375	199	30	1	1,196,281

M5.9 Sanchiao fault earthquake – simulation of TWD system performance

M7.5 Hsincheng fault earthquake – Marie simulation of TWD system performance

Convergence curves of MCS

M5.9 Sanchiao fault EQ

M7.5 Hsincheng fault EQ

 $\mathbf{v}\mathbf{v}$

SI Values for each case in MCS

M5.9 Sanchiao fault EQ

M7.5 Hsincheng fault EQ

18

Concluding remarks

- The technology of hydraulic performance analysis of water systems after major earthquakes has been developed.
 - **Observations from simulation in case study:**
 - Characteristics of convergence seems to be predominated by the networking of a system, and have to be identified before performing Monte Carlo simulation
 - In post-quake situation, a mere probabilistic scenario simulation is not enough to assess the system performance; critical damages in the system should be deterministically treated

Thanks for your attention!