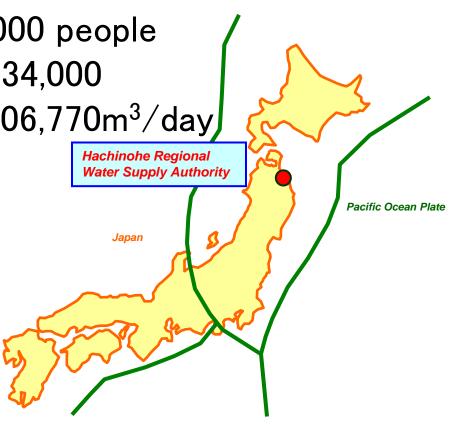
Estimation of earthquake resistant and earthquake proof for distribution system on Hachinohe Regional Water Supply Authority

Noboru Murakami

Hachinohe Regional Water Supply Authority (HRWSA)


Outline

- The measure for earthquake proof of water supply facilities (Plant and pipes).
- The estimated damage caused by Future Earthquake and estimation of earthquake resistance for distribution pipes.
- The inspection of corrosion of distribution pipes and the estimation of corrosion degree.
- The earthquake proofing of the distribution pipes which connected to the important foothold institutions.

Outline of our waterworks

 \ll Year 1986:10 waterworks unified HRWSA \gg

- Service area: 800km²
- Population served: 333,000 people
- Number of customers: 134,000
- Maximum daily supply: 106,770m³/day

Quakeproof of the structures (1/2)

(Rapid sand filter of Hakusan water treatment plant)

- Quake-proof diagnosis
 - ➡ Necessary of seismic reinforcement
 - Conduct reinforcement work (May, 2008)
- Engan Hokubu earthquake of Iwate prefecture occurred in July 24,2008. (JMA magnitude 6.8)
- 3 columns were damaged.

Pic. 3 columns damaged

Quakeproof of the structures (2/2)

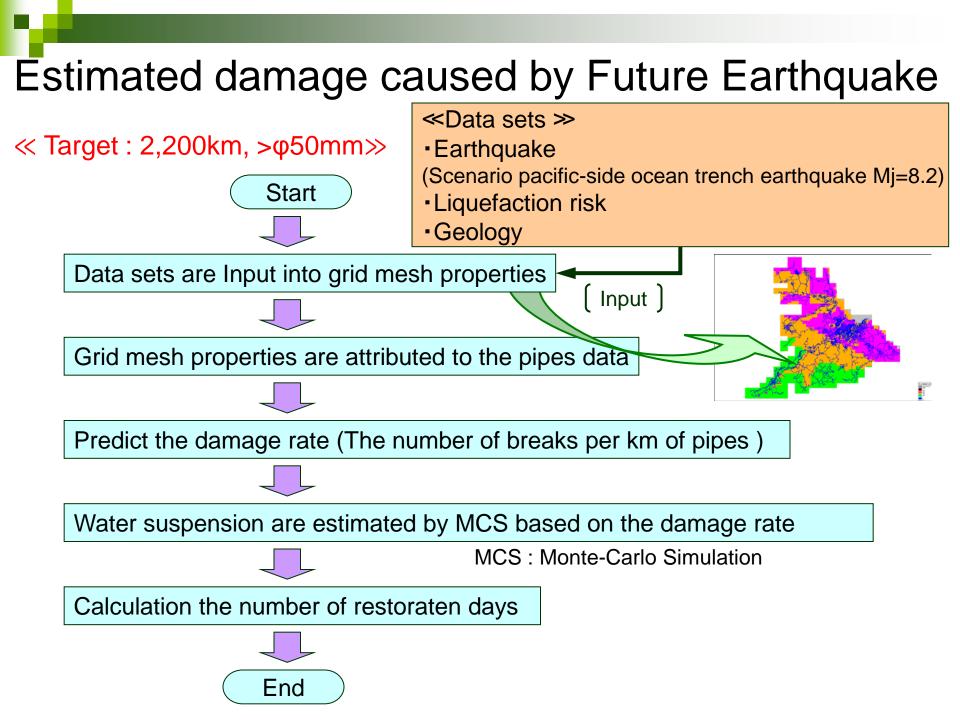
 Lightweighting of the roof member

 Enlargement of the quakeproof wall of the columns

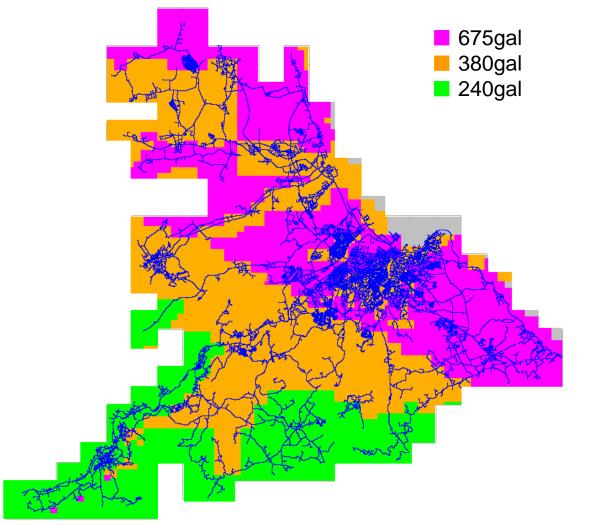
Steel sheet reinforcement

Quakeproof of the pipes

 $\ll\!\text{DIPs}$ with seismic flexible joint are introduced. \gg

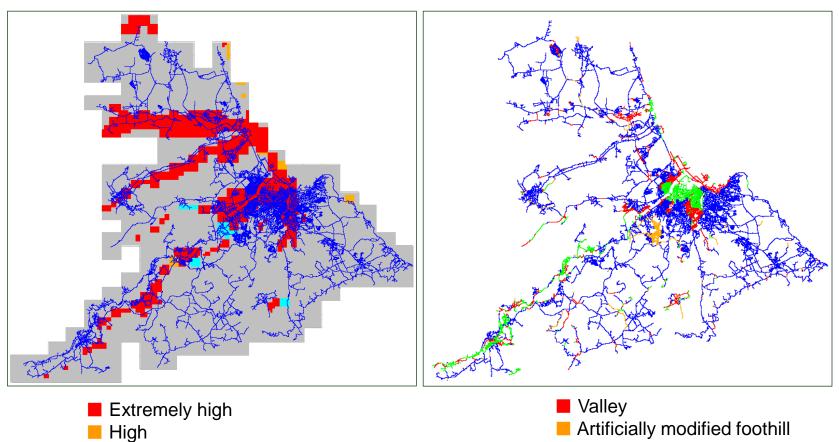

- Raw water transmission main and transmission pipe: After 1989
- Distribution pipes After 1996
- \ll Corrosion control of pipes \gg
 - Polyethylene sleeve: After 1991

DIP with seismic flexible joint


Polyethylene sleeve

Data sets (1/2)

• A distribution map of acceleration


(Scenario pacific-side ocean trench earthquake)

Data sets (2/2)

Liquefaction risk

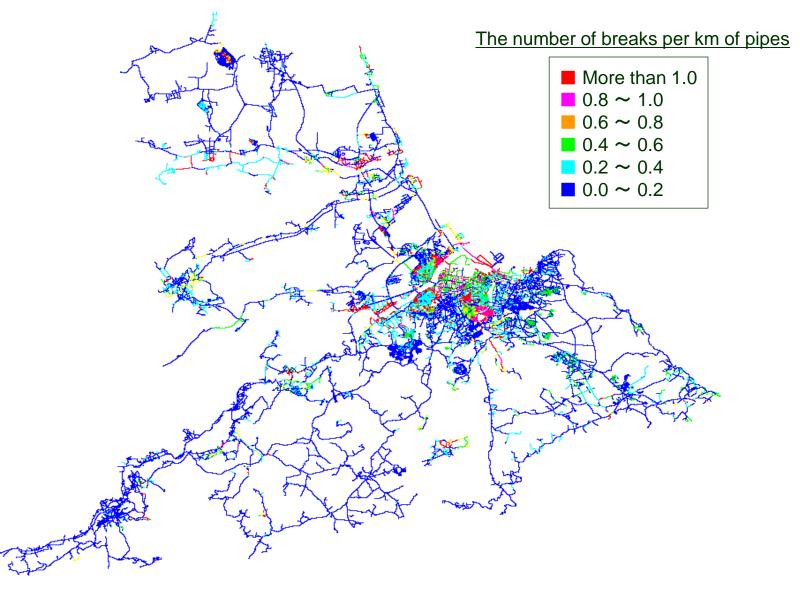
Geology

- 1
- Extremely low
 None

- Artificially modified hill
- Stiff ground

Alluvial flatland

Equation of pipe damage prediction


Rm (α)= Cp x Cd x Cg x Cl x R (α)

 $Rm(\alpha)$: Damage rate for peak ground acceleration [breaks/km]

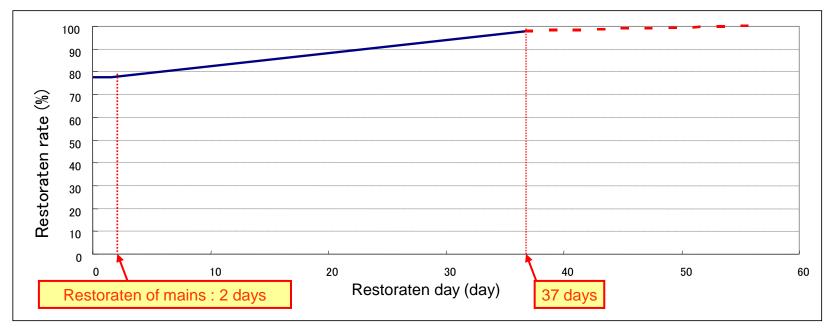
- Cp : Coefficient of pipe material
- Cd : Coefficient of pipe diameter
- Cg : Coefficient of ground/foundation
- CI : Coefficient of liquefaction risk
- R(α) : Standard damage rate [breaks / km] (=2.88 x 10⁻⁶ x (α -100)^{1.97})
- α : Peak ground acceleration [gal]

Ср		C d		C g		CI	
ACP DIP DIP (Seismic) CIP SSP SGP VP PP	1.2 0.3 0.0 1.0 0.0 1.0 1.0 0.3	$-\phi$ 75 ϕ 100- ϕ 150 ϕ 200- ϕ 450 ϕ 500- ϕ 800 ϕ 900-	1.6 1.0 0.8 0.5 0.2	Artificially modified hill Artificially modified foothill Valley Alluvial flatland Stiff ground	1.1 1.5 3.2 1.0 0.4	None Extremely low High Extremely high	1.0 1.0 2.0 2.4

Distribution map of pipe breaks

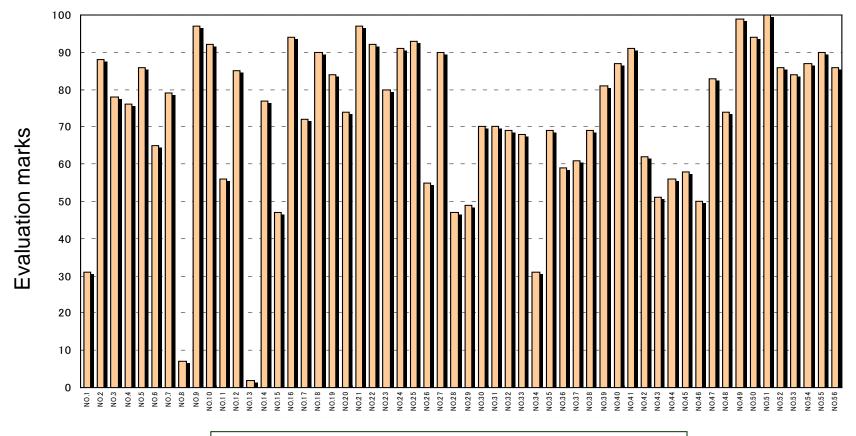
Damage rate and number of breaks

 Comparison of Scenario pacific-side ocean trench earthquake & Sanriku Harukaoki Earthquake


Earthquake		PGA (gal)	Ave. Dam (breaks	•	Number of breaks	
Scenario pacific-side ocean trench earthquake		675	0.31		708	
Sanriku Harukaoki Earthquake (1994)		602	0.06		113	
	 Pipe material Distribution mains (More than φ300mm) : 22 Distribution submains (Less than φ250mm) : 686 					
	Pipe material	Ave. Dama (breaks/			ber of breaks	
	ACP	0.49		30		
	CIP	0.51		9		
	DIP (Not seismic joint)	0.17		277		
	PP	0.33		58		
	SGP	1.08		14		
	SSP ()		0	
	PVC	0.76		315		
	Others	0.63			5	

Water suspension ratio, population affected by water suspension and restoration day

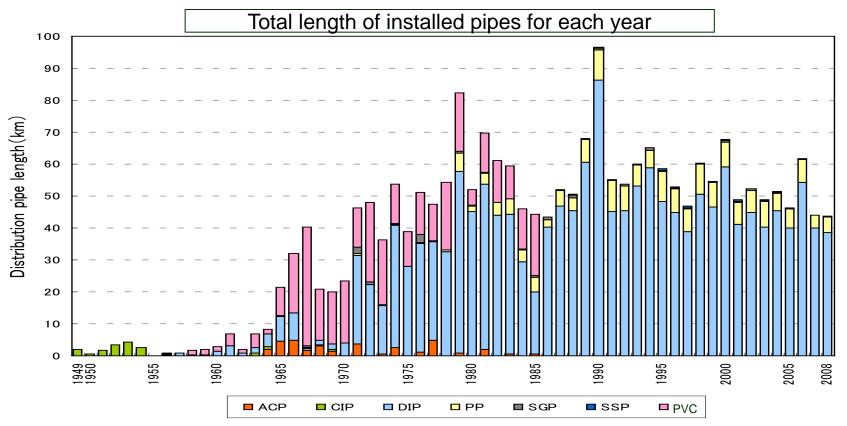
- Water suspension ratio : 22.3% (in water supply area)
- Population affected by water suspension : 74,200 people


(in water supply area)

Restoration day : 37 days (Mains : 2 days, Submains : 35 days)

Evaluation of earthquake resistant

- •Object items : water suspension ratio for Future Earthquake (%)
- •Mark standard : water suspension ratio 100% = 1 point, 0%=100 points

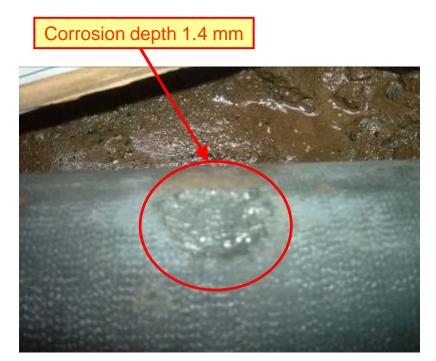


Results for Hachinohe-district distribution block

Present condition of distribution pipes (2,200km)

- DIP: 75% (1,650km)
- PVC : 16% (350km)
- PPφ50 : 7% (150km)
- Others : 2%(50km)
- Length of distribution pipes installed before 1969

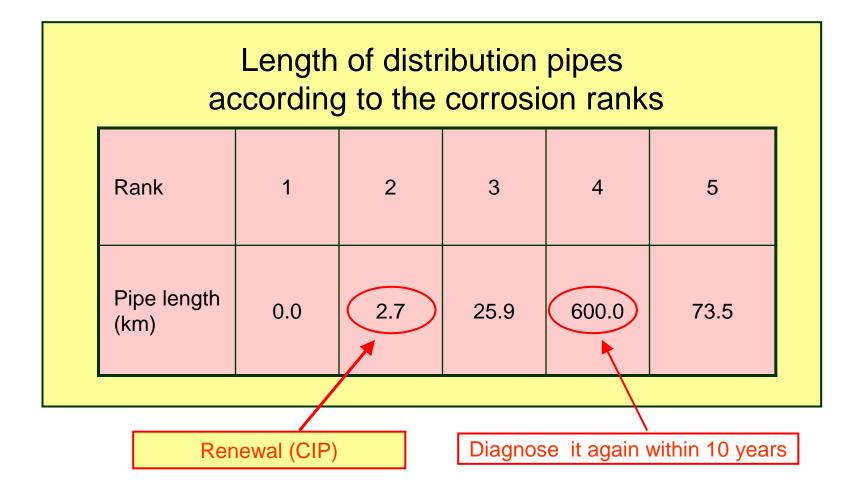
(about 180km : 40 years passed in legal durability)



Inspection of corrosion (DIP-CIP)

 214 spots of corrosion on DIPs & CIPs without polyethylene sleeve were chosen and inspected.

DIP φ200 (installation in 1973)

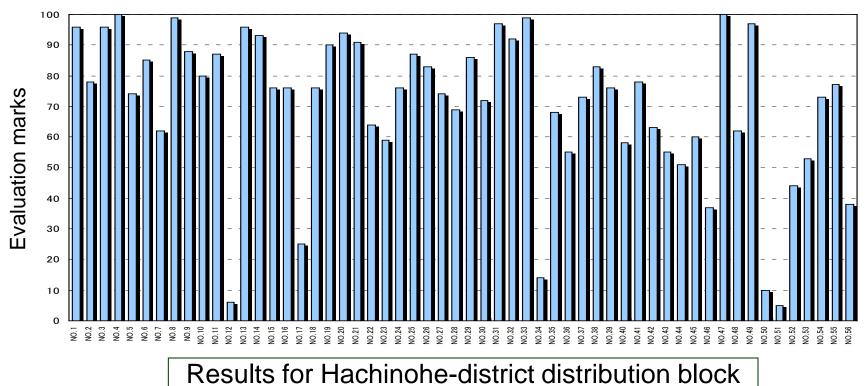

DIP ϕ 100 (installation in 1979)

Judgment standard of corrosion depth

	Rank	Definition	Measures	4 200mm DID
	5	Corrosion depth =< 2.0 mm	Diagnose it again within 20 years	Φ300mm DIP Corrosion depth (mm) Outside
epth	4	2.0 mm < Corrosion depth =< 3.8 mm (Design safety factor = more than 2.0~2.5)	Diagnose it again within 10 years	2.0
Corrosion depth	3	The state that a safety factor for the inner and external pressure is short (Design safety factor = more than 1.0 and less than 2.0~2.5)	Drafting of a renewal plan	4 3.8 4.7
	2	The state to be not worthy of inner and external pressure (Design safety factor = less than 1.0)	Renewal	2 6.5
	1	A penetraten by the corrosion	Renewal	7.5 Inside

JWWA [Guidelines for renewal of water supply facilities]

Results of evaluation of corrosion ranks(DIP•CIP)



Evaluation of corrosion degrees

•Object items: 1) Corrosion ranks, 2) Break rate in normal conditions,

3) The number of years of installation

- Evaluation method : A geometric mean of the three object items
- Mark standard
 - 1) More than rank 4 (100 points), Less than rank 2 (1 point)
 - 2) More than 0.003 breaks / km (100 points), Less than 0.4 breaks / km (1 point)
 - 3) Less than 40 years (100 points), More than 55 years (1 point)

Earthquake resistant rate of the distribution pipes which connected to the important foothold institutions

- Hospital : 472 places
- School : 399 places
- Distribution route from service reservoirs were searched using the hydrological model
- Earthquake resistant rate = length of earthquake resistant pipes

≪Result≫ / Total length of distribution pipes

Facilities	Total length of distribution pipes (km)	Length of distribution pipes as PVCs (km)	Length of distribution pipes as earthquake resistant pipes (km)	Earthquake resistant rate (%)
Hospital	413.0	15.1	131.9	31.9
School	493.8	24.6	151.7	30.7
Hospital and School	652.5	38.5	197.4	30.3

The problems that should be improved

- Updating PVCs to quake-proof pipes as soon as possible
- Building substantial support systems ; realizing restoration for less than 28 days of targeted restoration period
- Making a steady update quake-proof plan of pipes
- Earthquake resistant proofing of the distribution pipes connected to important institutions
 - (i.e. polyclinic hospitals)

Conclusions

Promotion of earthquake resistant proofing of pipes.

- ■Examination of the priority of earthquake proofing based on an evaluation result.
- Exploitation of fixed-quantity assessment with numerical value.
- □Setting the future numerical target.
- Progress management of the achievement.

Thank you for your attention !

DIP with seismic flexible joint (φ 1,000mm) : completed in 1978