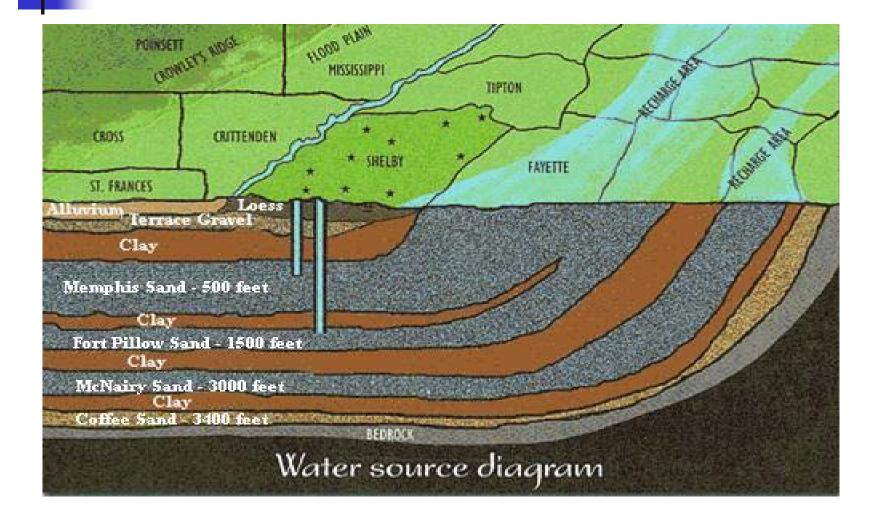
6th US/Japan/Taiwan Water Seismic Conference October 14th and 15th, 2009

Memphis Light, Gas and Water Division Strategic Seismic Planning: The Role of Tanks, Generators, and Distribution System Piping

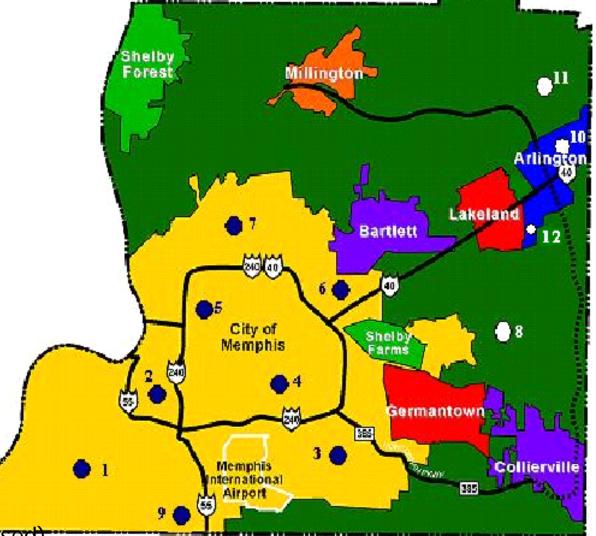
Presenter-Chandrika Winston, P.E., Manager, Water Matrix, Memphis Light, Gas and Water Division

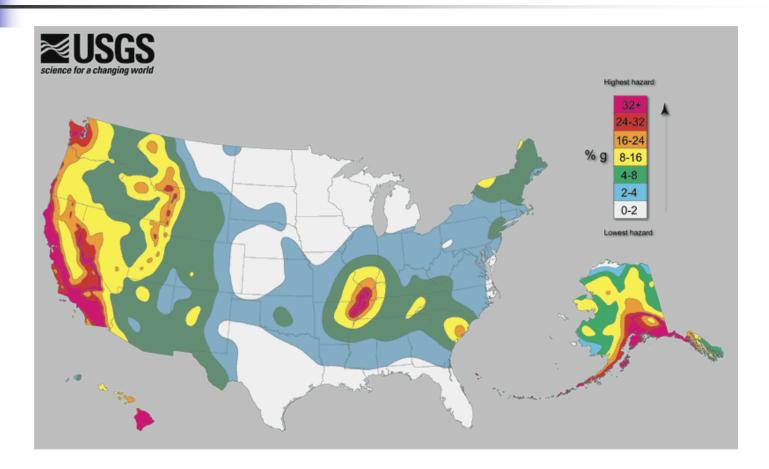

Co-Author – Fred Von Hofe, P.E., Manager Water Quality Assurance Laboratory

Co-Author – Quinton Clark, P.E., Supervisor Water Engineering

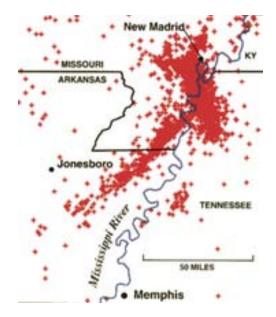
Memphis Light, Gas and Water Division System

- 8 Major Water Plants 30 MGD each
- 8 Major Well Fields (172 Wells 2 MGD each)
- 3 Minor Water Plants and Well Fields (less than 5 MGD)


The Memphis Light, Gas and Water Division System


Location of Water Treatment Plants and Station Capacity____

- Davis 30MGD


- 2- Allen 30MGD
- 3- Lichterman 30MGD
- 4- Sheahan 35MGD
- 5- Mallory 35MGD
- 6- McCord 35MGD
- 7- Morton 30MGD
- 8- Shaw 30MGD
- 9- Palmer 5.5MGD
- 10- Arlington
- 11- LNG 1.1MGD
- 12- Pickel Station (Proposed)

Memphis Area Seismic Hazard

Memphis Area Seismic Hazard

- Seismic Hazard is driven by New Madrid Seismic Zone
- Extends from the vicinity of Marked Tree, AR (approximately 35 miles NW of Memphis) to Southwest Missouri/southern tip of Illinois

Historical Regional Earthquakes New Madrid Seismic Zone

- **3** Great earthquakes 1811-1812
 - December 16, 1811; M7.9
 - January 23, 1812;M7.6
 - **February 7, 1812; M8.0**
- 15 Major aftershocks, >M7.0
- Smaller earthquakes in 1843 & 1895

Presentation Overview

Chemical Tank Restraint System

- Emergency Generators
- Distribution System Piping

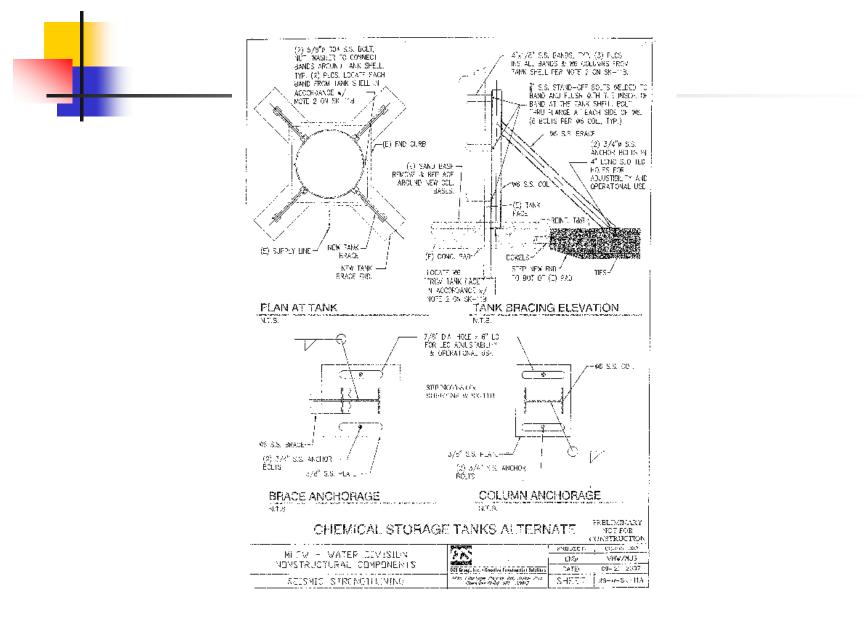
Chemical Storage Tanks

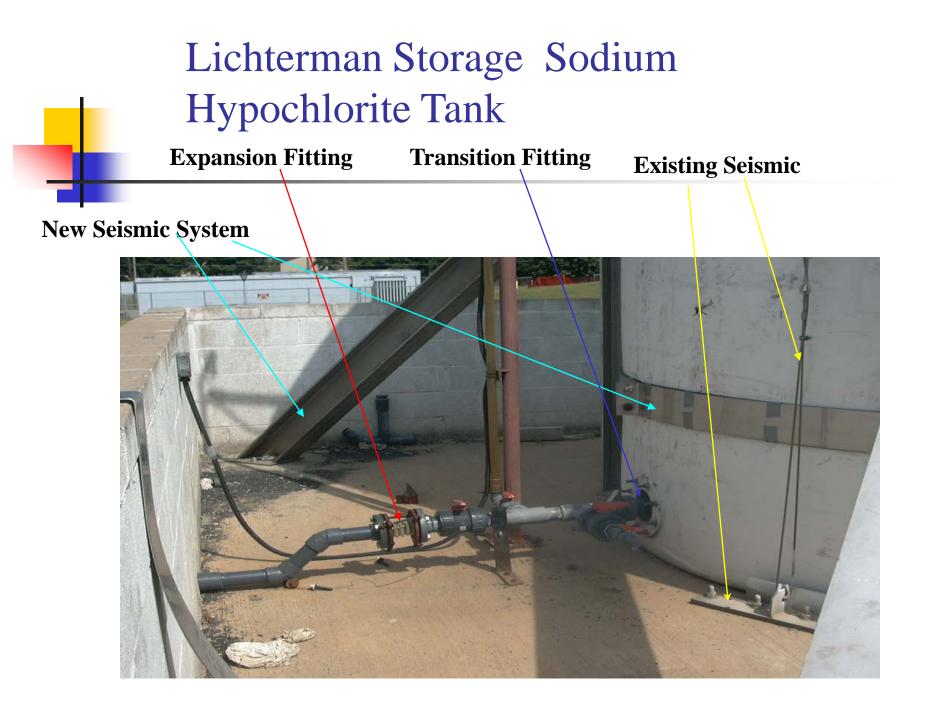
- SAFE-Tank Storage and Containment System and Peace of Mind Chemical Storage
 - 110% Minimum Containment
 - Full Sidewall Protection
 - Double Wall Protection
 - Protected Containment Area
 - Isolate Reactive Chemicals
 - Crosslink Polyethylene
 - Manufactured by Poly Processing

Double-Wall Containment "Tank within a Tank"

SAFE-Tank System

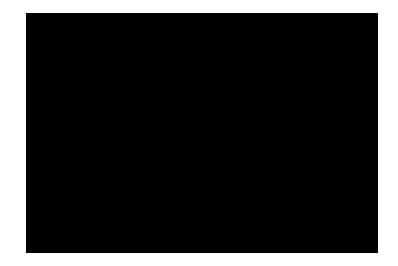
Lichterman Pump Station


Storage Tanks


Hydrofluoşalicic Acid

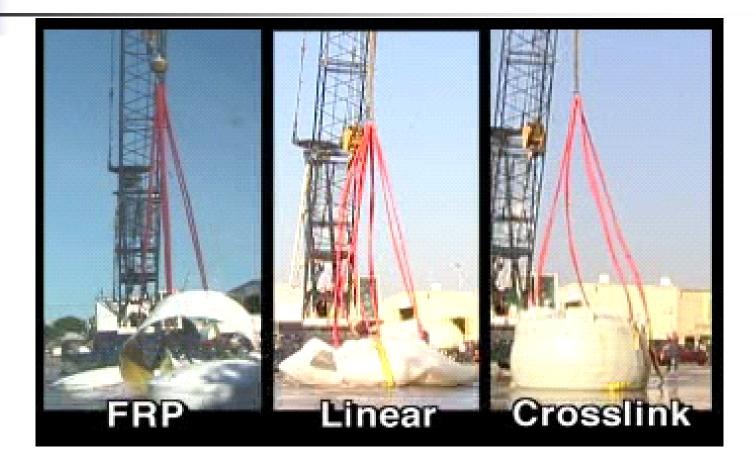
Sodium Hypochlorite

Band Type Seismic Restraint System Not Recommended by Consultant


Poly Processing Drop Test

Demonstrates Strength of Tank
Three Types of Material

Fiber Reinforced Plastic
High Density Polyethylene
Cross Linked High Density Polyethylene


Simulation of Force that Tank Can Handle

Drop Test Simulation Similar to a Seismic

Specifically recommended for Sodium Hypochlorite

PolyProcessing Impact Resistance

HDXLPE = Ultimate IMPACT Performance

Presentation Overview

- Chemical Tank Restraint System
- Emergency Generators
- Distribution System Piping

Emergency Generator Systems

- Generator locations: 7 of 8 major pumping stations
- Generator sizes: 1250 kW, 1500 kW, or 2000 kW
- Switchgear house interface for existing electrical switchgear.
- 10,000 20,000 gallon underground storage tanks

Emergency Generator Installation

Generator Installations

- Shaw (1250 kW) in 1989
- Mallory and Allen (1500 kW) in 1991
- Davis (1500 kW) in 1998
- Lichterman (1500 kW) in 2000
- McCord (2000 kW) in 2005
- Morton (2000 kW) in 2007

Generator Seismic Features

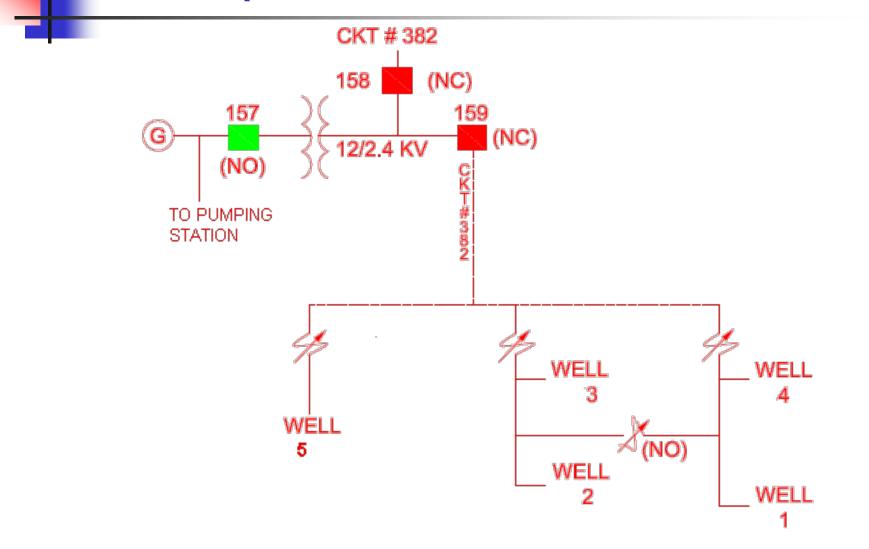
- Engine generator set and frame mounted components including the base frame and base vibration isolators
- Engine exhaust system and supporting structure.

Generator Seismic Features

- Engine start batteries and supporting structure.
- Engine start batteries battery charger.
- Fuel oil day tank and supporting structure.

Generator Seismic Features

 Underground storage tank, electrical equipment, and switchgear house.



Switchgear House

- Switchgear house interface for existing electrical systems
- 12 kV and 23 kV electrical systems
- Required at Mallory, Davis, Lichterman, McCord, and Morton
- Reservoir High Service Pumps
- Well electric circuits

Example Generator One-line

Significant Hazards in Memphis

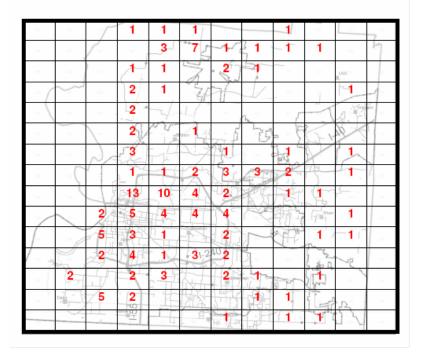
- 1994 Ice storm
- 2003 Hurricane force winds
- 2008 Tornado
- 2009 Straight-line winds and tornado

Presentation Overview

- Chemical Tank Restraint System
- Emergency Generators
- Distribution System Piping

Distribution System

- 3710 miles of Distribution Main
 - 30"-36" = 55 miles
 - 12-24" = 850 miles
 - <12" = 2805 miles</p>
- 41 miles of Collecting Main
- 43,000 Valves


Distribution Piping

- System wide pipe vulnerability assessment
 - Levels of ground shaking
 - Soil conditions
 - Pipe Characteristics (Materials, Size, Joint types, etc)

All estimates are probabilistic

Bridge Crossings

Locations of Water Pipeline Bridge Crossings

- 149 total pipelines on Bridges
- Used MLGW FIS mapping data
- Confirmed by Google Earth
- Narrowed to Key Bridge Crossings of >12"

Typical Bridge Crossing

Typical Bridge Crossing

Pipeline Repair Estimates

TableⅡ

- Scenario
 Earthquakes, M6.2, M7.0, M7.7
- Categorized by "All" and >12" and <10" Pipe sizes

	M6.2			M7.0			M7.7		
	ALL	12+	10-	ALL	12+	10-	ALL	12+	10-
CI/DI	174	41	133	434	103	332	1293	329	963
PVC	2.8	0.0	2.8	7.2	0.0	7.1	25	0.1	25
UNSPEC	0.6	0.0	0.6	1.5	0.0	1.5	5.3	0.1	5.2
AC	0.2	0.0	0.2	0.6	0.0	0.6	2.0	0.0	2.0
CU	0.2	0.0	0.2	0.6	0.0	0.6	2.1	0.0	2.1
STEEL	0.1	0.0	0.0	0.1	0.0	0.0	0.8	0.5	0.3
GAL	0.2	0.0	0.2	0.4	0.0	0.4	1.1	0.0	1.1
Total Non-Service Repairs	180	40	140	440	100	340	1330	330	1000
Services	35			90			265		
Total All Repairs	215			530			1595		

Summary of Water Pipeline Repair Estimates for Three Earthquake Scenarios

Notes:

12+ indicates pipe size of 12 inches or larger

10- indicates pipe size of 10 inches or less

Total non-service repairs and service repairs rounded to nearest 10 and nearest 5, respectively.

Service Restoration Estimates

- Lack of AMI will make initial estimates difficult
- System must be stabilized before repairs can begin
- # of personnel available
- Highly redundant system

References

- Cramer et al (2004): The Memphis, Shelby County, Tennessee Seismic Hazard Maps, USGS Open File Report (OFR 2004-1924)
- FEMA 356: Prestandard and Commentary for Seismic Rehabilitation of Buildings, FEMA (2000)
- MLGW Multi-Hazard Risk Assessment, Seismic Performance Objectives, March 2, 2007
- MLGW Seismic Mitigation Plan 2003 for Earthquake Preparedness of Critical Water System Facilities

Acknowledgements

- Kim Deaton, Senior Communications Specialist, Memphis Light,
 - Gas and Water Division, Memphis, Tennessee
- Richard E. Howe, P.E., R. W. Howe & Associates, PLC, Memphis Tennessee

