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ABSTRACT 
 

A challenging problem in structural system identification and damage detection lies in the requirement of 
a large number of sensors and the numerical difficulty in obtaining reasonably accurate results when the 
system is large. To address this issue, the substructure identification (SSI) approach has been developed 
based on measured response data and external excitations. Due to practical limitations, the response data 
may not be available at all degrees of freedom of the structure and that the external excitations may not 
be measured (or available). In this paper, a new data analysis method, referred to as the sequential 
nonlinear least-square estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) along 
with the sub-structure approach will be used to identify damages at critical locations of the complex 
structure. In our approach, only a limited number of response data are needed and the external excitations 
may not be measured. The accuracy of this approach is demonstrated using a long-span truss with finite-
element formulation and an 8-story base-isolated building. Simulation results demonstrate that the 
proposed approach is capable of tracking the changes of structural parameters, leading to the 
identification of structural damages at critical locations. 

 
Keywords: System Identification and Damage Detection, Substructure Identification, Structural Health 
Monitoring 
 

 
INTRODUCTION 

 
The development of a health monitoring system to ensure the reliability and safety of structures 

has received considerable attention recently. In particular, the ability to detect structural damage, 
based on measured vibration data, is of practical importance. Various analysis methodologies for 
structural damage identification have been proposed [e.g., Bernal & Beck (2004), Lin et al (2005)]. 
However, most of the methodologies available in the literature [e.g., Bernal & Beck (2004), Lin et al 
(2005)] deal with linear structures and require both the reference data (the data without damage) and 
the data after damage. In practice, however, the reference data may not be available or difficult to 
establish, and after a severe event, such as a strong earthquake, it may not be feasible to conduct 
vibration tests to obtain meaningful data for damage identification. It would be desirable for a data 
analysis method to be capable of detecting the structural damage based solely on the vibration data 
measured during a severe event, such as a strong earthquake, without a prior knowledge of the 
undamaged structure. In this connection, several damage identification methodologies have been 
developed recently, including the least-square estimation (LSE) [e.g., Lin, et al (2001), Yang and Lin 
(2004a, 2005)], the extended Kalman filter (EKF) [e.g., Yang, et al (2006b, c)], the sequential 
nonlinear least-square estimation [Yang, et al (2006a)], and others [see references in Yang and Lin 
(2005)].  
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In the approaches mentioned above, external excitations (inputs) should be available from sensor 
measurements. Due to practical limitations, it may not be possible to install enough sensors in the 
health monitoring system to measure either all the external excitations (inputs) or the acceleration 
responses (outputs) at all DOFs. In fact, it is highly desirable to install as few sensors as possible. 
When the external excitations are not measured or not available, analytical recursive solutions with 
adaptive damage tracking capabilities have been proposed to identify the structural damage based on: 
(i) the LSE approach [Yang, et al (2004b; 2007)], and (ii) the extended Kalman filter technique [Yang, 
et al (2006c)]. Recently, a new technique, referred to as the sequential nonlinear least squares 
estimation with unknown inputs (excitations) and unknown outputs (responses) (SNLSE-UI-UO), has 
been developed [Yang and Huang (2006d)]. In this approach, external excitations and some 
acceleration responses are not needed, so that the number of sensors required in the health monitoring 
system can be reduced. This new technique is capable of tracking the variations of structural 
parameters, such as the degradation of stiffness, due to damages.  

 
In practical applications, the modeling of engineering structures often involves a large number of 

degrees of freedom (DOFs), leading to not only numerical difficulties for an accurate damage 
detection, but also the requirement of excessive number of sensors. It is highly desirable to reduce the 
required number of sensors as much as possible due to economic considerations and data management. 
Further, for a complex structure, there may only be a limited number of hot spots or critical areas 
where damages may likely to occur, and hence the health monitoring can be restricted to such critical 
areas. This will allow for a significant reduction of the number of required sensors. Consequently, 
structures can be decomposed into smaller subsystems for the purpose of damage identification. In this 
connection, the so-called substructure identification (SSI) approach [e.g. Koh et al (1991, 2003)] has 
been investigated.  

 
 In this paper, we present the application of the newly developed SNLSE-UI-UO method and the 

sub-structure approach to identify sub-structural damages in complex structures based on limited 
number of measured vibration data and the finite-element formulation. We shall demonstrate the 
feasibility of the local health monitoring for critical elements without the global information of the 
structure, thus reducing the required number of sensors and the burden of data management, such as 
the data transmission and analyses. Simulation results using a long-span truss and an 8-story base-
isolated building will be presented to demonstrate the accuracy of the proposed approach in tracking 
the variation of sub-structural parameters due to damages. 
 

SEQUENTIAL NONLINEAR LSE  
WITH UNKNOWN INPUTS AND UNKNOWN OUTPUTS 

 
Let T

m21 )]t(x),...,t(x),t(x[=x  and T
m21 )]t(x),...,t(x),t(x[ &&&& =x  be the displacement and 

velocity vectors, respectively, of a m-DOF nonlinear structure to be considered. The acceleration 
vector T

m21 )]t(x),...,t(x),t(x[)t( &&&&&&&& =x  is divided into two vectors, denoted by 
T

s21 )]t(x),...,t(x),t(x[)t( ∗∗∗∗ = &&&&&&&&x  and T
sm21 )]t(x),...,t(x),t(x[)t( −= &&&&&&&&x , in which )t(xi

∗&&  (i = 1, 2, …, s) 
and )t(xi&&  (i = 1, 2, …, m-s) are unknown (unmeasured) and known (measured) acceleration responses 
(outputs), respectively. In a similar manner, the external excitations are divided into two vectors, 

T
r21 )]t(f),...,t(f),t(f[)t( ∗∗∗∗ =f  and T

m21 )]t(f),...,t(f),t(f[)t( =f , where )t(fi
∗  (i = 1, 2, …, r) and 

)t(fi  (i = 1, 2, …, m ) are unknown (unmeasured) and known (measured) excitations (inputs), 
respectively. The equation of motion of the m-DOF nonlinear structure can be expressed as 

 )t( )t( )t()]t([ )]t([ )t( sc
∗∗∗∗ −+=++ xMfηfηxFxFxM &&&&&  (1) 

in which M = [ )sm(m −× ] mass matrix corresponding to the (m–s)-known (measured) acceleration 

response vector )t(x&& ; ∗M = ( sm× ) mass matrix corresponding to the s-unknown (unmeasured) 
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acceleration response vector )t(∗x&& (or unknown outputs); )]t([ c xF &  = m-damping force vector; 
)]t([ s xF = m-stiffness force vector;  )t(f  = m -known (measured) excitation vector; η  = 

mm× excitation influence matrix corresponding to )t(f  ; )t(∗f = r-unknown (unmeasured) excitation 

vector (or unknown inputs); and ∗η  = rm×  excitation influence matrix corresponding to )t(∗f . For 
simplicity of presentation, the argument t of all quantities above will be dropped in the following. 
Further, the bold-face letter represents either a vector or a matrix. 
 

The unknown quantities to be identified are the unknown excitation (input) vector ∗f , the 
unmeasured acceleration response (output) vector ∗x&& , the state vector TTT ],[ xxX &= , including the 

displacement and velocity vectors, and the parametric vector T
n21 ],...,,[ θθθ=θ  of the structure, 

involving n unknown parameters, iθ  (i = 1, 2, … , n), such as stiffness, damping and nonlinear 
parameters. Our objective is to determine not only all the unknown quantities above but also the 
variation of the parametric vector θ  due to structural damages, such as the degradation of stiffness, etc. 
Hence, θ  will be treated as a time varying function later. For simplicity of derivation, θ  will first be 
considered as a constant vector in this section, and the solution thus obtained will be extended in the 
next section using the adaptive tracking technique to account for the variation of θ  as a function of 
time. 

 
The observation equation associated with the equation of motion, Eq.(1), can be written as  

 yfηεθXφ +=+  )(  (2) 
where )(Xφ  is the observation matrix, X  is the state vector defined above, xMηfy && −=  is known, 

TTT ][ ∗∗= xff &&  is an unknown vector consisting of unknown inputs ∗f  and unknown outputs ∗x&& , 

][ ∗∗ −= Mηη , and )t(ε  is the model noise. Eq.(2) can be discretized at tktt k ∆==  as  

 kkkkkk  )( yfηεθXφ =−+  (3) 

in which )t( kk XX = , ]t);t([)( kkkk XφXφ = , )t( kk θθ = , )t( kk εε = , )t( kk ff =  and 

)t( kk yy = .  
 

Define an extended unknown vector k,eθ  at kt  

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

k

kk,e
f

θ
θ   (4) 

where k,eθ is a )srn( ++ -unknown vector. Then, Eq.(3) can be expressed as  
 kkk,ekk,e )( yεθXφ =+  (5) 

in which ] )([)( kkkk,e ηXφXφ −= . Note that kX  and k,eθ  in Eq.(5) are unknown quantities to 
be estimated. Hence, Eq.(5) is a nonlinear vector equation with unknowns kX  and k,eθ . 
 

Instead of solving kX  and k,eθ  simultaneously by forming an extended composite unknown 
vector, we propose to solve kX  and k,eθ  in two steps. The first step is to determine k,eθ  by 

assuming (or under the condition) that kX  is given, and the second step is to determine kX  through a 
nonlinear LSE approach, referred to as the sequential nonlinear least square estimation with unknown 
inputs and unknown outputs (SNLSE-UI-UO), as follows. 
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STEP I: Determination of recursive solutions for )( 1k1k ++ Xθ  and 1k|1k ++f  given 1k+X  

Suppose the state vector 1k+X  is known and the parametric vector kθ is constant, i.e., 

k21 ... θθθθ ==== . Based on Eqs.(3)-(5), the sum squares error can be expressed as 

 ∑ −−=
+

=
+

1k

1i
i,eii,ei

T
i,eii,eik,e1k ])([])([)(J θXφyθXφyθ  (6) 

If the number of DOFs, m, of the structure is greater than the total number, rs + , of unknown inputs 
and unknown outputs TTT ][ ∗∗= xff && , i.e., rsm +> , the LSE approach can be used to minimize 

the objective function given by Eq.(6) to yield the recursive LSE solution for the extended unknown 

vector 1k,e +θ . The recursive solution for the estimates of 1k+θ  and 1k+f , denoted by 1kˆ +θ  and 

1k|1k
ˆ

++f , respectively, can be obtained as follows [see Yang et al (2004b, 2007), Yang and Huang 

(2006d) ],  

 ]ˆ ˆ)()[(ˆ)(ˆ
1k|1kk1k1k1k1k1k,k1k1k +++++++++ +−+= fηθXφyXKθXθ θ  (7) 

]ˆ)()][()([)(ˆ
k1k1k1k1k1k,1k1k

T
1k1k1k|1k θXφyXKXφIηXSf θ +++++++++++ −−−=  (8) 

 1
1k

T
1kk,1k1k1k

T
1kk,1k1k, )]()()[()( −

++++++++ += XφPXφIXφPXK θθθ  (9)

 1
1k1k,1k1k

T
1k1k })]()([{)( −

++++++ −= ηXKXφIηXS θ  (10) 

 
])()([

)]()()([

k,1k1k1k1k,k,

1k1k
T

1k1k1k1k,1k,

θθθ

θθ
PXφXKP

XφηXSηXKIP

++++

+++++++

−•

+=
  (11) 

in which )( 1k1k, ++ XKθ  is the LSE gain matrix. 
 

STEP II: Determination of the estimate 1k|1kˆ ++X  for 1k+X  based on nonlinear LSE 

Since 1k+θ  and 1k+X  are interrelated, the estimate 1kˆ +θ  is a function of the unknown state 
vector 1k+X , i.e., )(ˆˆ 1k1k1k +++ = Xθθ , as shown in Eq.(7). It follows from Eq.(6) that the general 
objective function should be expressed as 

 ∑ +−+−=
+

=
++

1k

1i
iiiii

T
iiiii1k1k ]ˆ )(ˆ)([]ˆ )(ˆ)([)(J fηXθXφyfηXθXφyX  (12) 

and the unknown state vector 1k+X  will be estimated by further minimizing the general objective 
function in Eq.(12). Since Eq.(12) is highly nonlinear in unknown state vector 1k+X , the non-linear 
least-square estimation approach proposed in Yang, et al (2006a) is used to estimate 1k+X , denoted 
by 1k|1kˆ ++X , and the result is given as follows, 

 )]ˆ(ˆ[ˆˆ k|1k1k1k1kk|1k1k|1k +++++++ −+= XyyKXX  (13) 
in which  
 1k2k1k|kk,1kk|1k ˆˆ +++ ++= xBxBXΦX &&&&  (14) 

 1T
1k,1kk|1k1k,1k

T
1k,1kk|1k1k ][ −

+++++++++ += ΨPΨIΨPK  (15) 

 T
k,1kk|kk,1kk|1k +++ = ΦPΦP  (16) 

 1k|kk,kk1k|kk,kk1k|kk|k )( −−− −=−= PΨKIPΨKPP  (17) 
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In equations above, k,1k+Φ  is the transition matrix for the state vector from k to k+1, 

and 1kk|1k1k1kk|1k1k1kk|1k1k
ˆ )]ˆ([ˆ)]ˆ([)ˆ(ˆ +++++++++ −= fηXXθXXφXy . Thus, the estimate 

1k|1kˆ ++X  obtained from Eqs.(13)-(17) will be used to replace 1k+X  in Eqs.(7)-(11) for computing 

the estimates of unknown parametric vector 1kˆ +θ  and unknown inputs and outputs 1k
ˆ
+f . The new 

methodology proposed and derived above is referred to as the sequential nonlinear least square 
estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) [Yang and Huang (2006d)]. 
The analytical solutions derived and presented in Eqs.(7)-(11) and (13)-(17) are not available in the 
previous literature. 
 

ADAPTIVE TRACKING 
 

The recursive solution 1kˆ +θ  in Eqs. (7)-(11) is derived based on the premise of constant 
parametric vector 1k+θ . Here, we use the adaptive tracking technique proposed in Yang and Lin 
(2005) to identify time-varying parameters of structures for detecting the damage. To track the 
variation of each parameter, say the jth element )1k(j +θ of 1k+θ , the estimation error 

)]k(ˆ)k([ jj θ−θ  is proposed to be expressed by )]k(ˆ)k()[1k( jjj θ−θ+λ , where )1k(j +λ  will be 
determined from the current measured data, so that the residual error is contributed only by the noise, 
eliminating the contribution due to the parametric variation. It can be shown that k,θP  in Eq.(9) is 

proportional to the covariance matrix of the estimation error at kt , 

i.e., ])ˆ)(ˆ[(E T
kkkk

2
k, θθθθPθ −−σ= − , where 2σ  is the variance of the model noises. Hence, the 

modification above for the estimation error is reflected in the k,θP  matrix in Eq. (9), 
i.e., 1kk,1kk, ++→ ΛPΛP θθ , where 1k+Λ  is a diagonal matrix with the jth diagonal element 

)1k(j +λ . Consequently, the recursive solution for the variable parametric vector, 1kˆ +θ , is proposed 
to be obtained from Eqs.(7) – (11) as follows, 

 ][ 1k|1kk1k1k1k,k1k
ˆ ˆˆˆ

++++++ +−+= fηθφyKθθ θ  (18) 

 )ˆ]([ˆ
k1k1k1k,1k

T
1k1k|1k θφyKφIηSf θ +++++++ −−−=   (19) 

in which 

 1T
1k

T
1kk,1k1k

T
1k

T
1kk,1k1k, ][ )()( −

++++++++ += φΛPΛφIφΛPΛK θθθ  (20) 

 1
1k,1k

T
1k ][ )( −

+++ −= ηKφIηS θ  (21) 

 ))()(( T
k1k,kkk,k

T
kk,k, ΛPΛφKIφηSηKIP θθθθ −−+= ,  k =1, 2, … (22) 

In Eqs.(20) and (22), 1k+Λ  is a diagonal matrix, referred to as the adaptive factor matrix, with 
diagonal elements )1k(λ1 + , )1k(λ2 + , …, )1k(λn + , where )1k(λ j +  is referred to as the adaptive 

factor for the estimated parameter )1k(j +θ at t)1k(t 1k ∆+=+ . The determination of the adaptive 
factor matrix 1k+Λ  has been described in Yang and Lin (2005). Also, the argument, 1k+X , of 

1k, +θK  and 1k+φ , which should be replaced by 1k|1kˆ ++X  in Eq.(13), has been dropped in Eqs. (18)-
(22) for simplicity of presentation.  
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                                               IDENTIFICATION OF SUB-STRUCTURE  
 

Consider a complex structure, such as the one shown in Fig.1(a), and suppose we are interested in 
monitoring some of the critical areas where damages may occur. For simplicity of presentation, let us 
consider only one critical area, consisting of 12 members as shown in Fig.1(a) by dashed lines, for the 
monitoring purpose. This critical area is referred to as the sub-structure as shown in Fig.1(b). From 
Fig.1(b), the sub-structure formed by these 12 critical members consists of 4 masses at nodes 6, 7, 17 
and 18, referred to as the internal nodes, and 4 interface nodes at nodes 5, 8, 16 and 19. Let )t(ru be 
the displacement vector of the internal nodes, and )t(su  be the displacement vector of the interface 
nodes. Then, the equation of motion of the sub-structure can be expressed as  

 [ ] [ ] [ ] [ ])t(
)t(
)t(

 
)t(
)t(

 
)t(
)t(

 r
r

s
rrrs

r

s
rrrs

r

s
rrrs f

u
u

KK
u
u

CC
u
u

MM =⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
&

&

&&

&&
 (23) 

in which )t(rf  is the external excitations to the sub-structure at the internal nodes, and the entire 
structure has been assumed to be linear elastic for simplicity of presentation. 
 

The interaction effects at the interface nodes can be considered as the inputs (excitations) and the 
above equation can be expressed as  
 )t()t()t()t()t()t()t( srssrssrsrrrrrrrrrr uKuCuMfuKuCuM −−−=++ &&&&&&  (24) 
Now, some of the acceleration responses of the internal nodes may not be measured, referred to as the 
unknown outputs ∗x&&  in Eq.(1), and some of the accelerations at the interface nodes may not be 
measured, referred to as unknown inputs (excitations) ∗f  in Eq.(1). When some acceleration responses 

at the interface nodes are measured, their corresponding velocity and displacement responses are 
obtained by the Newmark- β  integration method and these terms on the right hand side of Eq.(24) 
should be moved to the left hand side. Thus Eq.(24) can be cast appropriately into the form of Eq.(1), 
and the SNLSE-UI-UO solution presented previously can be used. 
 

SIMULATION RESULTS 
 
To demonstrate the accuracy of the sub-structure approach using SNLSE-UI-UO for parametric 

identifications and damage detections at critical locations, a long-span truss with the finite element 
formulation and an 8-story base-isolated building will be considered. For both examples, the sampling 
frequency is 500Hz for all measured responses. 

 
Long-span Truss with Finite-Element Model 
 

To demonstrate the accuracy of the substructure approach using SNLSE-UI-UO for parametric 
identifications and damage detections of substructures, the long-span truss in Fig.1(a) will be 
considered. This is a planar truss with 44 members (or elements) and a total of 41 DOFs [Bernal 
(2002), Gao and Spencer (2002)]. As observed from Fig.1(a), the system is statically indeterminate. 
Now, the substructure shown in Fig.1(b) will be identified and monitored. The finite-element 
substructure model consists of 12 members with uniform cross-section, 4 internal nodes, and 4 
interface nodes, where each node has 2 DOFs (horizontal and vertical). Twelve critical members (or 
elements) to be monitored in Fig.1(b) are denoted as follows: member 1 (nodes 5-6), member 2 (nodes 
6-7), member 3 (nodes 7-8), member 4 (nodes 16-17), member 5 (nodes 17-18), member 6 (nodes 18-
19), member 7 (nodes 5-17), member 8 (nodes 6-18), member 9 (nodes 7-19), member 10 (nodes 6-
17), member 11 (nodes 7-18), member 12 (nodes 6-16). 

 
Let iM  and iK  be the local mass matrix and the local stiffness matrix, respectively, of the ith 

element (member) with an uniform cross-section in the local coordinate system, 
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FIG 1.  Long-span truss: (a) full structure with white noise excitation; (b) substructure;  

(c) full structure with earthquake excitation. 
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⎥
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⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2010
0201
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Lm ii
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⎥
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⎤
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⎢

⎣

⎡

−

−

=

0000
0101
0000
0101

kiiK  (25) 

in which iL  and im  are the length and the mass per unit length of the ith element (or member) of the 
sub-structure, respectively, and iiii L/AEk =  is the equivalent stiffness parameter, where iE  and iA  
are the Young's modulus and cross-sectional area of the ith element (or member), respectively. The 
local element mass and element stiffness matrices iM  and iK  are transformed into iM  and iK , 
which are the element matrices in the global coordinate system of the sub-structure, using the 
transformation matrix T , i.e., 

 TMTM i
T

i = ;   TKTK i
T

i =  (26) 
in which T  is a (4×4) matrix with its (i, j) element, ijT , as: θ==== cos44332211 TTTT , 

θ== sin3412 TT , θ−== sin4321 TT  and 0ij =T  for other i and j, where θ = the angle between the 

local and global coordinates. Finally, the element mass and stiffness matrices iM  and iK  are 
expanded to (m×m) matrices denoted by i

~M  and i
~K , and the global mass and stiffness matrices M  

and K  of the sub-structure, Fig.1(b), are obtained by summing up i
~M  and i

~K  for all the elements, 
i.e. 

 ∑=
=

p

1i
i

~MM ;   ∑=∑=
==

pp

1i
ii

1i
i k~ SKK  (27) 

in which for simplicity of presentation i
~K  is expressed in terms of iik S , where iiii L/AEk =  is the 

equivalent stiffness parameter and iS  is a (m×m) matrix of the ith element. In Eq.(27), p is the total 
number of elements (members). 
 

In the literature, the Rayleigh damping is usually assumed and the damping matrix C is expressed 
as: 

 KMC β+α=  (28) 
in which α  and β  are the mass-proportional and the stiffness-proportional damping coefficients. All 
the truss members are made of steel (with E = 200 Gpa) with an area of 64.5 cm2.  For simplicity of 
computation, the element mass matrix iM  is approximated by a diagonal matrix with diagonal 

element kg1075.1 5×  [Bernal (2002)], and hence the global mass matrix M  is diagonal after 
transformation. The structural parameters are: m/MN 430ki =  (i = 1, 2, …, 6), m/MN 52.238ki =  

(i = 7, 8, 9, 12), m/MN 67.286ki =  (i = 10, 11), 1s 1064.0 −=α  and s 104.3 3−×=β . With the 
structural properties above, the first three natural frequencies and the corresponding modal damping 
ratios are: iω  = 0.64, 1.19 and 1.54 Hz, and iζ  = 2%, 1.99% and 2.2%. Two different cases for the 
long-span truss subject to different external excitations will be considered in the following. 
 

Case 1 (White Noise Excitation): Consider that the truss shown in Fig.1(a) is subject to two 
vertical white noise excitations applied vertically at nodes 5 and 7. The measured responses include: (i) 
the horizontal and vertical accelerations at all interface nodes and internal node 18, (ii) the horizontal 
acceleration of internal node 6, and (iii) the vertical accelerations of internal nodes 7 and 17. Note that 
the horizontal accelerations of internal nodes 7 and 17, the vertical acceleration of internal node 6, and 
the white noise excitation )t(f ∗  at node 7 are not measured (unknown). All the measured quantities 
are simulated by superimposing the theoretically computed quantities with the corresponding 
stationary white noise with a 2% noise to signal ratio. The unknown quantities to be identified include: 
α , β , ik  (i =1, 2, …, 9), the state vector, and the unknown white noise excitation )t(f ∗  at node 7.  
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FIG 2. Identified parameters for a substructure of a long span truss (Case 1); 
(damage pattern 1) ik  in MN/m, α  in s-1 and β  in 10-3 sec. 
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FIG 3. Identified parameters for a substructure of a long span truss (Case 1); 
(damage pattern 2) ik  in MN/m, α  in s-1 and β  in 10-3 sec. 
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The initial guesses for α , β  and ik  are 1
0 s 2.0 −=α , s 106 3

0
−×=β , MN/m 300k 0,i =  (i = 1, 

2, …, 12), respectively. The initial values for the state vector and the unknown excitation are zero, and 

the initial gain matrices 0,θP  and 0|0P  are taken to be 25
2

0, 10 IPθ
−=  and 16

6
0|0 10 IP = . 

 
Two damage patters are considered. For damage pattern 1, a damage occurs at t = 5 sec, at which 

time the equivalent stiffness 2k  of member 2 in Fig.1(b) is reduced linearly from 430 MN/m to 344 
MN/m (20% reduction) within 2 seconds. Based on the proposed adaptive SNLSE-UI-UO technique, 
the identified structural parameters are presented in Fig.2 as solid curves. Also shown in Fig.2 as 
dashed curves are the theoretical results for comparison.  

 
For damage pattern 2, a damage occurs at t = 5 sec, at which time the equivalent stiffness 2k  of 

member 2 is reduced abruptly from 430 MN/m to 301 MN/m, then another damage occurs at t = 7 sec, 
at which time the equivalent stiffness 6k  of member 6 is reduced abruptly from 430 MN/m to 365.5 
MN/m. Based on the proposed adaptive SNLSE-UI-UO technique, the identified structural parameters 
are presented in Fig.3 as solid curves, whereas the theoretical results are shown as dashed curves for 
comparison. The identified white noise excitation )t(f ∗  at node 7 for a segment from 2 to 2.2 seconds 
is presented in Fig.4 as a solid curve, whereas the dashed curve in the same figure is the theoretical 
result. It is observed from Figs.2-4 that the proposed adaptive SNLSE-UI-UO technique tracks the 
substructural parameters, their variations due to damage, and the unknown excitation very well. 
 

 

 
FIG 4. Identified unknown white noise excitation for long-span truss;  

unit of f*(t) in 104 N. 
 
 
Case 2 (Earthquake Excitation): Now, the left supports of the long-span truss in Fig.1(a) is 

modified so that the structure resembles the truss bridges as shown in Fig.1(c). Suppose this truss 
bridge is subject to the El Centro earthquake with a peak ground acceleration of 2g (PGA = 2g). The 
measured responses include: (i) the horizontal and vertical accelerations of all interface nodes and 
internal nodes 6 and 18, and (ii) the horizontal accelerations of internal nodes 7 and 17. Note that the 
vertical accelerations of internal nodes 7 and 17, and the earthquake ground acceleration )t(x0&&  are not 
measured (unknown). All the measured quantities are simulated by superimposing the theoretically 
computed quantities with the corresponding stationary white noise with a 2% noise to signal ratio. In 
this case, the RMS of a particular response signal is computed from the temporal average over 30 
seconds. The unknown quantities to be identified include: α , β , ik  (i =1, 2, …, 12), the state vector, 
and the unknown earthquake ground acceleration )t(x0&& . 

 

2 2.05 2.1 2.15 2.2 
-1 

-0.5

0

0.5 

1
  

f*(t) 

Time, sec 



 12

 

2 4 6 8 10
200

400

600

2 4 6 8 10
200

400

600

2 4 6 8 10
200

400

600

2 4 6 8 10
200

400

600

2 4 6 8 10
200

400

600

2 4 6 8 10
200

400

600

2 4 6 8 10
0

200

400

2 4 6 8 10
0

200

400

2 4 6 8 10
0

200

400

2 4 6 8 10
0

200

400

2 4 6 8 10
0

200

400

2 4 6 8 10
0

200

400

2 4 6 8 10
0

0.1

0.2

2 4 6 8 10
2

3

4

 

FIG 5. Identified parameters for a substructure of a long span truss (Case 2); 
(damage pattern 1) ik  in MN/m, α  in s-1 and β  in 10-3 sec. 
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FIG 6. Identified parameters for a substructure of a long span truss (Case 2); 
(damage pattern 2) ik  in MN/m, α  in s-1 and β  in 10-3 sec. 
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Suppose a damage occurs at t = 5 sec, at which time the equivalent stiffness 2k  of member 2 in 
Fig.1(b) is reduced abruptly from 430 MN/m to 301 MN/m (30% reduction). The following assumed 
initial values and matrices are identical to that of Case 1: (i) initial state variables , (ii) initial unknown 
excitation, (iii) initial parametric values ik ( i = 1, 2, …, 12 ), α and β, and (iv) 0,θP  and 0|0P . Based 
on the proposed adaptive SNLSE-UI-UO technique, the identified structural parameters are presented 
in Fig.5 as solid curves. Also shown in Fig.5 as dashed curves are the theoretical results for 
comparison.  

 
The damage case above is severe. To show the capability of our proposed approach in detecting 

small damages, the same damage pattern above is considered except that the reductions of 2k  is 
smaller, where 2k  is reduced abruptly from 430 MN/m to 365.5 MN/m (15% reduction), at t = 5 sec. 
The identified structural parameters are presented in Fig.6 as solid curves, whereas the dashed curves 
are the theoretical results for comparison. Further, the identified earthquake ground acceleration )t(x0&&  
for a segment from 2 to 5 seconds is presented in Fig.7 as a solid curve, whereas the dashed curve in 
the same figure is the theoretical result. It is observed from Figs.5-7 that the proposed adaptive 
SNLSE-UI-UO technique tracks the substructural parameters, their variations due to damage, and the 
unknown excitation very well.  
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FIG 7. Identified unknown earthquake ground acceleration for long-span truss;  

unit of )t(x0&&  in m2/s. 
 
 

8-story Base-Isolated Building 
 

 Consider an eight-story shear-beam type building subject to an earthquake ground acceleration 
)t(x0&& , as shown in Fig.8(a). The properties of the building are as follows: (i) the mass of each floor is 

identical with im = 345.6 metric tons; (ii) the stiffness ik  (i = 1,2,…,8) of eight-story units are 340.4, 
325.7, 284.9, 268.6, 243, 207.3, 168.7 and 136.6 MN/m, respectively; (iii) the linear viscous damping 
coefficients ic  (i = 1,2,…,8) for each story unit are  490, 467, 410, 386, 348, 298, 243 and 196 
kN⋅sec/m, respectively. A lead-core rubber bearing isolation system is used to reduce the response of 
the building. The stiffness restoring force of the lead-core rubber-bearing is model by [Wen (1989)] 
 bybbbbbbsb vDk)1(xkF α−+α=  (29) 
in which the subscript b stands for the base-isolation system, bx  is the drift of the isolator, bk  is the 
stiffness, bα  is the ratio of the post yielding stiffness to the pre-yielding stiffness, ybD  is the yielding 
deformation, and bv  is the hysteretic component. The hysteretic component, bv , is modeled by 

)t(x0&&

Time, sec 
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 )v,x(f]|v|xv|v||x|xA[Dv bbb
n

bbbb
1n

bbbbb
1

ybb bb =γ−β−= −− &&&&  (30) 

in which bA , bβ , bn  and bγ  are parameters characterizing the hysteresis loop. Properties of the 
base-isolation system are: bm = 450 metric tons, bk = 180.5 MN/m, linear viscous damping bc  = 
26.17 kN.sec/m, bα = 0.6, ybD = 4 cm, bA = 1.0, bβ = 0.5, bn = 3 and bγ = 0.5. For a small 

amplitude vibration (linear), the first natural frequency is 1ω  = 5.24 rad/sec. The El Centro earthquake 
)t(x0&&  with a peak ground acceleration of 0.3g (PGA = 0.3g) is considered as the external excitation.  

A substructure consists of the rubber bearing and the first story as shown in Fig.8(b) is considered 
for identification. In this example, the equation of motion is expressed in terms of the coordinate ix  
representing the inter-story drift of the ith story. Two different cases will be considered. 
 

Case 1: Earthquake excitation is measured. The absolute accelerations bx&&  and 1x&& , and the El 
Centro earthquake ground acceleration )t(x0&&  are measured. All measured quantities are simulated by 
superimposing the theoretically computed quantities with the corresponding stationary white noise 
with a 2% noise to signal ratio. In this case, the RMS of a particular response signal is computed from 
the temporal average over 30 seconds. Parameters bα , ybD , bA  and bn  are assumed to be known 
constants. The unknown quantities to be identified are: 1c , 1k , bc , bk  bβ  and bγ , as well as the 
state vector of the substructure. 

 
Suppose a damage occurs at t = 15 sec, at which time the equivalent stiffness bk  is reduced 

abruptly from 180.5 MN/m to 144.4 MN/m (20% reduction). The initial guesses for ic , ik , bc , bk , 

bβ  and bγ  are: 0,ic  = 300 kN⋅sec/m, 0,ik = 100 MN/m (i = 1, 2,…,8), 0,bc  = 10 kN⋅sec/m, 0,bk = 
10 MN/m , 0,iβ  = 1, and 0,iγ  = 1, respectively. The initial values for the state variables are zero, and 

the initial gain matrices 0,θP  and 0|0P  are taken to be 6
10

0, 10 IPθ =  and 40|0 IP = . Based on the 
proposed adaptive SNLSE-UI-UO technique, the identified parameters are presented in Fig.9 as solid 
curves. Also shown in Fig.9 as dashed curves are the theoretical results for comparison. It is observed 
from Fig.9 that the proposed approach is able to track the structural parameters and their variations 
due to damage.  

 

       
        

        
        
        

          
        
        
        
                

            
        

                                 
     

             
  

                    
       

 

FIG 8.  An 8-story base-isolated building: (a) full structure; (b) substructure. 
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FIG 9. Identified parameters for a substructure of a 8-story base-isolated building  
(Case 1); bk  in 104 kN/m, 1k  in 105 kN/m, bc and 1c  in kN.s/m. 
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FIG 10. Identified parameters for a substructure of a 8-story base-isolated building  
(Case 2); bk  in 104 kN/m, 1k  in 105 kN/m, bc and 1c  in kN.s/m. 
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FIG 11. Identified unknown earthquake ground acceleration for 8-story base-isolated building; unit of 
earthquake acceleration )t(x0&&  in m/s2. 
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FIG 12.  Identified hysteresis loops for the rubber-bearing of  

8-story base-isolated building. 
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Case 2: Earthquake excitation is not measured. In this case, inter-story drifts bx , 1x  and 2x  are 
measured. The earthquake ground acceleration )t(x0&&  is not measured and hence it is unknown. The 
measured drifts were simulated by superimposing the theoretically computed quantities with the 
corresponding stationary white noise with a 2% noise to signal ratio. Finally, the inter-story 
accelerations bx&& , 1x&&  and 2x&&  were computed by differentiations. Similar to Case 1, parameters bα , 

ybD , bA  and bn  are assumed to be known constants. The unknown parameters to be identified are: 

1c , 1k , bc , bk  bβ , bγ , the unknown earthquake excitation )t(x0&& , and the state vector of the 
substructure. 

 
Suppose a damage occurs at t = 15 sec, at which time the equivalent stiffness bk  is reduced 

abruptly from 180.5 MN/m to 144.4 MN/m (20% reduction). The initial unknown excitation is zero, 
and the following assumed initial values and matrices are identical to that of Case 1 above: (i) initial 
state variables , (ii) initial parametric values 1c , 1k , bc , bk  bβ  and bγ , and (iiii) 0,θP  and 0|0P . 
Based on the proposed adaptive SNLSE-UI-UO technique, the identified parameters are presented in 
Fig.10 as solid curves. Also shown in Fig.10 as dashed curves are the theoretical results for 
comparison. The identified earthquake ground acceleration )t(x0&&  for a segment from 2 to 5 seconds is 
presented in Fig.11 as a solid curve, whereas the dashed curve is the theoretical result. It is observed 
from Figs.10 and 11 that the proposed approach is able to track both the structural parameters and their 
variations due to damage, as well as the unknown earthquake excitation. Finally, the predicted 
hysteresis loops for the stiffness restoring force sbF  versus the drift bx  of the base isolator are 
presented in Fig.12 as solid curves, whereas the dotted curves represent the theoretical results. As 
shown in Fig.12, the predictive capability of the proposed approach is quite reasonable. 
 

CONCLUSIONS 
 

In this paper, the recently proposed adaptive sequential nonlinear least-square estimation with 
unknown inputs and unknown outputs (SNLSE-UI-UO) [Yang, et al (2006d)] along with the sub-
structure approach have been used to identify structural damages at critical locations of a complex 
structure. This proposed approach allows for the damage monitoring of critical sub-structures without 
the need of information for the global complex structure, thus reducing significantly the total number 
of sensors required. Even for the critical sub-structure, the external excitations (inputs) and some 
acceleration responses (outputs) are not required to be measured, again reducing the required number 
of sensors. Simulation results using a long-span truss with finite-element formulation and an 8-story 
base-isolated hysteretic building demonstrate that the proposed approach is capable of identifying the 
changes of structural parameters, leading to the identification of structural damages. 
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