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ABSTRACT 
 

Observer-based fault detection and isolation (FDI) filter design method is a model-based method. By 
carefully choosing the observer gain, the residual outputs can be projected into different independent 
subspaces. Each subspace corresponds to different monitored structural element so that the projected 
residual will be nonzero when the associated structural element is damaged and zero when there is no 
damage. The key point of detection filter design is how to find an appropriate observer gain. This 
problem can be interpreted in a geometric language and is found to be equivalent to the problem of 
finding a decentralized static output feedback gain. But it is a challenging task to find the 
decentralized controller by either analytical or numerical methods because its solution set is generally 
non-convex. In this paper, the concept of detection filter and iterative LMI method for decentralized 
controller design are combined to develop an algorithm to compute the observer gain. It can be used 
to monitor structural element state: healthy or damaged. The simulation result shows that the 
developed method can successfully identify structural damages. 
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INTRODUCTION 
 
Existence of structural damage in civil engineering infrastructures, such as high-rise buildings, 
highway/railway bridges, offshore petroleum foundations, etc., may greatly influence the overall 
performance of the system or even lead to disastrous consequences. Therefore, detecting structural 
damages, which are caused by earthquakes, impacts, or explosions immediately after the event or 
monitoring long-term deterioration due to environmental changes and human uses, is very important 
for structural maintenance. This leads to the field of research known as structural damage detection, or 
structural health monitoring, or alternatively, fault detection, isolation and identification. 
 
In the past decades, numerous approaches to the problem of Failure Detection and Isolation (FDI) in 
dynamic systems have been developed. Among them are two major FDI philosophies: physical 
redundancy and analytical redundancy. Physical redundancy is achieved simply through hardware 
replication. Unlike physical redundancy, analytical redundancy, which implies the inherent 
redundancy contained in the static and dynamic relationship among the system inputs and measured 
outputs (Frank, 1990), is a model-based method and has gained increasing consideration world-wide 
recently. Analytical redundancy methods have many advantages over physical redundancy methods, 
for example the replication of identical hardware components (actuator/sensor) is more expensive, 
restricted, and sometimes difficult to implement in practice (Dharap et al., 2006;  Koh et al., 2005a, 
2005b). 
 
There are many FDI methods based on analytical redundancy approaches. Among them, the Beard-
Jones detection filter (BJDT) has received increasing consideration world-wide recently. In their 
pioneering work done in the early seventies, Beard (1971) and Jones (1973) found that with the proper 
choice of filter feedback gains, the filter residual will have directional characteristics that can be easily 
associated with different faults. The BJDT filter design method has been successively improved by 
many people, e.g. Massoumnia (1986), White (1987), Douglas (1996, 1999) and Liberatore (2002). In 
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particular, an important geometric interpretation of the BJDT filter has been developed by 
Massoumnia (1986).  Douglas (1996, 1999) extended this geometric interpretation and found that the 
problem of finding a detection filter gain is equivalent to that of finding a constant static decentralized 
output feedback controller, and then Youla parameterization was used to obtain those detection filters. 
In this paper, this equivalent static decentralized output feedback controller design problem is solved 
by iterative linear matrix inequalities (ILMI) method, which is introduced by Cao et al. (1998). 
 
Decentralized control is widely used in large-scale systems, e.g. electric power networks, 
socioeconomic systems and large-scale space stations, which are usually geographically distributed. 
Centralized control of such systems is either uneconomical or unreliable due to long-distance 
information transfer between local control stations. Decentralized control only uses the locally 
measurements to compute control inputs, which reduces the risk of data losing and time delay during 
long-distance information transfer. However, it is a challenging task to find decentralized controllers 
by either analytical or numerical methods because its solution set is generally non-convex. Recently, 
linear matrix inequalities (LMIs) approach has been proposed to solve the decentralized stabilization 
and H∞ control problem, for example Cao et al. (1998), Scorletti and Duc (2001), Zhai et al. (2001) 
and reference therein. Cao et al. (1998) studied the static output feedback decentralized stabilization 
problem, proposed an iterative LMI (ILMI) algorithm to obtain the decentralized feedback gain and 
extended the idea to static output feedback stabilization with guaranteed H∞ performance. Scorletti and 
Duc (2001) modeled the linear time invariant (LTI) system with decentralized controllers as an 
interconnection of subsystems. Dissipative concept and LMI approach were combined to design the 
controller for each closed-loop subsystem. Zhai et al. (2001) considered the dynamic decentralized 
output feedback H∞ control problem and reduced it to a feasibility problem of a bilinear matrix 
inequality (BMI) which was solved by using the idea of the homotopy method. 
 
In this paper, the concept of detection filter design (Douglas, 1996, 1999) and the ILMI method for 
decentralized controller design (Cao et al., 1998) are combined to develop an algorithm for structural 
damage detection and isolation. The system is assumed to be observable. The state observer is 
constructed to generate the residual outputs, which contain the structural damage information. By 
carefully choosing the observer gain, the residual outputs can be projected into different independent 
subspaces. Each subspace is related to different monitored structural element. The problem of finding 
the observer gain is converted to that of finding a static decentralized output feedback controller. ILMI 
approach is used to find the stable observer gain which put the poles of the closed-loop system to the 
left of some specified negative number to improve FDI system performance. The simulation result 
shows that the developed method can successfully identify structural damages. 
 
The paper is organized as follows. Section 2 is divided into two parts. The first part explains the 
iterative LMI method for decentralized controller design problem. The second part describes the 
observer-based detection filter design method and then applies iterative LMI procedure to find the 
detection gain for structural damage detection and isolation. Section 3 introduces a ten-story shear 
type building example to illustrate the applicability of the FDI method presented in this paper. Section 
4 concludes this paper. 
 

MATHEMATICAL FORMULATIONS 
 
Decentralized Static Output Feedback Controller Design Using ILMI Approach 
 
This section gives a brief review of decentralized static output feedback controller design based on 
ILMI approach (Cao et al., 1998). Consider a LTI system with q control channels 
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where x ∈ Rn is the state, z is the controlled output, ui and yi are the control input and the measured 
output of channel i (i = 1,2,…,q). BBi is an n × nui input influence matrix, C1 is an nz × n controlled 
output influence matrix, C2i is an nyi × n measured output influence matrix. 
 
The decentralized static output feedback control law is characterized as 
 
 ,    1,2, ,i i iu F y i q= = L  (2) 
 
where Fi is an nui × nyi constant output feedback gain.  The controlled input ui only depends on yi, 
which is part of the whole measurements y. 
 

If we stack input u and output y as: 1 2
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system (1) and control law (2) can be rewritten as a closed-loop form as 
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Notice that the static output feedback gain FD is a block diagonal matrix in spite of a full matrix as 
seen in centralized control. The closed-loop system (3) is stabilizable if there exists a block diagonal 
matrix FD such that all eigenvalues of (A + BFDC) are in the left complex plane. However, even for 
centralized static output feedback control it is very difficult to find a stable controller since the 
solution set is non-convex (Ghaoui et al., 1997). Obviously, it is more difficult to obtain the 
decentralized static output feedback controller FD because of its block diagonal constraint. Cao et al. 
(1998) presented an iterative LMI approach to solve this problem; they proved the following necessary 
and sufficient condition for decentralized static output feedback stability. 
 
There exists a decentralized static output feedback controller FD such that the closed-loop system is 
stable and all poles of the closed-loop system are put to the left of Re(s) = α / 2 in the complex plane if 
and only if there exist two symmetric and positive definite matrix P and X of compatible dimensions 
satisfying the matrix inequality 
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where α is a negative number. 
 
The matrix inequality (4) is non-linear since there exist non-linear terms, such as XBBTP, PBBTX and 
XBBTX. Thus, the difficulty is that how to find a block diagonal matrix FD such that non-linear matrix 
inequality (4) is satisfied with some P > 0 and X > 0. It can not be solved directly using Matlab LMI 



toolbox. This is the reason why iterative LMI approach is needed. The iterative algorithm consists of 
the following steps. 
 
Step 1: Select Q > 0, and solve the following Riccati equation: 
 
 0T TA P PA PBB P Q+ − + =  (5) 
 
Assume the solution is X and set i = 1. 
 
Step 2: Substitute X into the matrix inequality (6) and solve the generalized eigenvalue problem for αi. 
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Step 3: Substitute X and αi into the matrix inequality (6) and solve the optimization problem for Pi and 
FD: Minimize trace(Pi) subjected to the LMI constraints (6) and (7). 
 
Step 4: If αi or all eigenvalues of (A + BFDC) are less than some specified negative number μ, FD is a 
stabilized decentralized static output feedback gain. Stop. 
 
Step 5: If iX P δ− < , a pre-determined tolerance, go to Step 6, else set X = Pi and i = i + 1, then go to 
Step 2. 
 
Step 6: The system may be not stabilizable via decentralized static output feedback gain. Stop. 
 
Detection Filter Problem 
 
The state-space model of a linear time-invariant dynamic system with q failure modes can be modeled 
by (Beard, 1971; Jones, 1973; Massoumnia, 1986; White and Speyer, 1987; Douglas, 1996 and 1999) 
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where x ∈ X, u ∈ U and y ∈ Y with n = dim(X), p = dim(U) and m = dim(Y). A is an n × n system 
state transmission matrix, BB

�

u is an n × p input influence matrix, u is an q × 1 input force vector, and C 
is an m × n output influence matrix. Fi is an n × 1 fault direction vector, i=1,2,…,q, q is the number of 
fault directions and mi(t) is the ith arbitrary scalar function of time. When no faults occur, mi(t) = 0. 
The fault directions Fi can be used to model actuator, sensor and component faults. A detailed 
treatment of all three failures can be found in Beard (1971) and Jones (1973). Consider the following 
full-order observer 
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where L∈Rn×m is the observer gain matrix, r(t) is the residual outputs. 
 
The state estimation error ˆ( ) ( ) ( )t x t x tε = −  dynamics are 
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If (C, A) is observable and L is chosen so that (A + LC) is stable, then in steady-state and in the 
absence of disturbances and modeling errors, the residual r is nonzero when a fault has occurred. But 
it is not enough. We also want to know which fault has occurred and this is what a detection filter is 
designed to do. In the papers by Massoumnia (1986) and Douglas (1999), the detection filter problem 
is interpreted in a geometric approach, where a set of (C, A) invariant subspaces Wi are found first and 
then L is the end product of an observer design algorithm. When mi(t)  ≠ 0, the residual r(t) remains in 
the output subspace CWi. Furthermore, the output subspace CW1, CW2, …, CWq are independent so 
that r(t) has a unique representation r(t) = z1 + z2 + … + zq with zi ∈ CWq. The fault is identified by 
projecting r(t) onto each of the output subspaces CWi. The following statement summarizes the above 
detection filter problem in the geometric language. 
 
Given the LTI system (8), the detection problem is to find a set of n-dimensional subspaces Wi, i=1, 
2, …, q, such that the following conditions are satisfied 
 

Subspace invariance: 
 (A+LC)Wi ⊆ Wi (12) 
 

Fault inclusion 
 Fi ⊆ Wi (13) 
 

Output separability 
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q
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C
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for some matrix L with dimension n × m. 
 
Douglas (1996 and 1999) showed that the subspaces Wi are usually chosen as a set of mutual 
detectable, minimal unobservability subspaces or detection spaces. These subspaces are dependent on 
system matrices A, C and Fi and satisfy conditions (12), (13) and (14) such that the spectrum of (A + 
LC) may be placed arbitrarily. Given a set of detection spaces, the detection filter gain L can then be 
characterized easily as follows. 
 
Let W1, W2, …, Wq be a set of (C, A) invariant subspaces that solve the detection filter problem and let 
the Wi:  Wi → X be the insertion map. Let Pi: Wi → Wi be any projection where Ker(Pi) = Ker(CWi) 

and let îF  decompose Pi as ? T
i i iF F = P  and ?T

i iF F I= . Let Hi: Y → Y be another projection where 

Im(Hi) = CWi and let iH%  be the associated natural projection that satisfies  and 
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Also define the projection 
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and the associated natural projection . Then the detection filter gain L can be parameterized as 
follows 

0H%
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for some β: Im(H0) → X and αi: CWi → Wi where i = 1,2,…,q. 
 
In Eq. (17), αi (i = 1, 2, …, q) and β are free parameters with compatible dimensions. These 
parameters should be chosen so that (A + LC) is stable. This is the only requirement to ensure that the 
residual r(t) will stay in output subspace CWi when mi(t) is nonzero. Douglas (1993) substituted Eq. 
(17) into the error dynamic system (Eq. (10) and (11)), finding that it is equivalent to the problem of 
decentralized static output feedback controller, shown as follows. 
 

  (18) 1 1 0
1

ˆ( ) ( ) ( )
q

i i q q
i

t A t F m t W u W u uε ε
=

= − + + + +∑& L

 
1 1( ) ( )

( ) ( )q q

z t H C t

z t H C t

ε

ε

⎧ =
⎪
⎨
⎪ =⎩

%%

M
%%

 (19) 

 

1 1

0 0

( ) ( )

( ) ( )
( ) ( )

q q

y t H C t

y t H C t
y t H C t

ε

ε
ε

⎧ =
⎪
⎪
⎨

=⎪
⎪ =⎩

%

M
%

%

 (20) 

  (21) 

1 1 1

0 0 0

( ) ( )

( ) ( )
( ) ( )

q q q

u t K y t

u t K y t
u t K y t

=⎧
⎪
⎪
⎨ =⎪
⎪ =⎩

M

 
where 
 

  (22) ( )
1

ˆ ˆ
q

i i i
i

A A AW F H C
=

= + −∑ %

 
The , …,  are system outputs and corresponding to the detection filter natural failure indications. 
The y

1z% qz%

1, …, yq are system observations and the u1, …, uq are system controlled inputs. The K1, …, Kq 
and K0 are constant decentralized controller gains which correspond to the detection filter gain 
parameters α1, …, αq and β and determine the closed-loop properties of the detection filter. 
 
The system (18)~(21) is a decentralized static output feedback control problem (shown in Fig. 1). The 
task is to find unknown controllers K0, K1, …, Kq such that the closed-loop system is stable. As long as 
the closed-loop system is stable, i.e. all eigenvalues of (A + LC) are in the left complex plane, the 
effect of initial condition on the state estimation error ε(t) (see Eq. (10)) will approach zero when time 



approaches infinity. But, if the poles of the closed-loop system are very close to the imaginary axle, it 
will take a long time to damp the effect of initial condition. As we know, the system output zi(t) will be 
nonzero when the ith fault occurs, i.e. mi(t) ≠ 0. It had better that zi(t) is mainly caused by fault, 
otherwise fault alarm may happen. Therefore, we hope that the closed-loop poles stay in the left of 
some negative number which is not very small. The decentralized controllers K0, K1, …, Kq can now 
be solved by iterative LMI approach introduced in Section 2.1. 
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                     Fig. 1:  Decentralized Control Diagram                   Fig. 2:  10-story shear type building 
 
 

SIMULATION EXAMPLE 
 
Shear walls are widely used in high-rise buildings to resist horizontal forces, especially in earthquake-
prone region. Sometimes, the high-rise building with strong shear walls can be simply modeled as the 
shear type building. As shown in Fig. 2, it is a ten-story shear type building with 3 inputs and 3 
outputs. Three inputs locate at the 8th, 9th and 10th story, and three outputs at the 2nd, 5th and 8th 
story. Measured outputs are displacement. Stiffness and mass of each story is 1000 N/m and 1 kg, 
respectively. Proportional Rayleigh damping is considered, i.e., C = 0.1M + 0.01K, where M, C, K are 
system mass, damping and stiffness matrix, respectively. 
 
Suppose that after a moderate earthquake cracks only happen on the surface of shear walls in the first, 
fifth and eighth stories. Thus, in the simulation program, the stiffness of the first story is reduced 50% 
between 10s~40s, so is the fifth story between 30s~50s and the eighth story between 40s~60s. 5% rms 
noise is included in all measurements. The closed-loop poles are required to remain in the left of -0.3. 
After obtaining Wi, îF ,  (i = 1,2,3) and substituting them into iterative LMI algorithm, we have the 
following decentralized controller 

iH%

 

  (23) 

131.154 0 0
372.016 0 0
315.400 0 0

0 0.634 0
0 0.942 0
0 0 0.5145
0 0 0.8510

DF

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢= −⎢
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

⎥
⎥



 
The most left pole of the closed-loop system is -0.425 ± j0.577, which is in the left of -0.3. The 
corresponding residual outputs are shown in Fig. 3, 4 and 5. Clearly, the story damages are identified 
correctly. Thus it can be concluded that the proposed method can be applied to structural damage 
detection. 
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            Fig. 3:  The residual output for Story 1                 Fig. 4:  The residual output for Story 5 
 

 
 
                                                    Fig. 5:  The residual output for Story 8 
 
 

CONCLUSIONS 
 
In this paper, the observer-based fault detection and isolation problem is studied using detection filter 
concept and iterative LMI approach. The detection filter can not only detect the occurrence of 
structural damages, but also tell which one has damaged. The geometric interpretation of detection 
filter discloses the characteristics of observer gain L. The problem of finding detection filter gain is 
equivalent to that of finding a decentralized static output feedback controller gain which is a non-
linear problem. In this paper, iterative LMI approach is used to find the decentralized controller and 
apply it to structural damage detection and isolation. The simulation example shows that the algorithm 
present in this paper can realize FDI goal. 
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