An integrated Risk Assessment on bridges

Chung-Yue Wang

Director Institute of Bridge Engineering China Engineering Consultants, Inc. (CECI)

&

Professor

Department of Civil Engineering_ National Central University

Lessons Learned from

Extreme Natural Disasters

多重災害威脅下之 路-橋-山-河並治

collaborative mechanism of mountain-river-road-bridge management systems under the threaten of <u>muti-hazard</u>

Bridge Pier Scouring

濁水溪自強大橋,1998

Reliability-Based Health Diagnosis/ Prognosis

Life-Cycle Maintenance, Monitoring and Management of Bridges

Civil Engineering Diagnostics

Engineers have to understand the reasons of causing damage and hazard of the system as well as their impact to the structural reliability in order to make cost-effective strategies of management.

Integrated Solutions from NDT/Monitoring/ Analysis to Decision Making

System Identification

Initial State

Scouring at Pier

Instability of Bridge

Failure & Collapse of Bridge

Forensic Study of Collapsed Bridge

Collapse of Shuan-Yuan Bridge

Possible Causes of Bridge Failure

Data Collection

Shun-Yuan Bridge Collapsed on August 8, 2009 (North Bound P1~P14 and South Bound

(North Bound P1~P14 and South Bound P1~P16)

Basic Data of Bridge from Taiwan-BMS

幾何資料														
橋梁總長		2082.8米		A1進橋版長	度	度 340米			A2進橋版長度		177米			
淨寬		2@9.5米		橋版投影面	積	責 35411平方		×	總車道數		4			
總橋孔數		68		最大跨距		30.6米			跨距分配	2@31.	50+66@30.60			
最高橋墩高度		9.2米		最低橋上淨高		橋上無跨越物		物	最低橋下淨高		7.0米			
結構資料(梁式橋)														
主梁	材質		予	頁力混凝土	型式		I型》		л. Х	每四	每跨斷面數量		3根	
横梁	材質		金	鋼筋混凝土		型式		中隔版		閒跙	閒距		10米	
橋面板	材質		金	明筋混凝土 鋪花		面材質		瀝青混凝土(AC)						
橋墩	材質		予	力混凝土 型:		式		單柱式		基礎	基礎型式		樁基礎	
	最深基礎深度		ŧ 5	0米	最浅	最淺基礎深度		35米		橋基	保護工法		無	
橋臺	材質		金	明筋混凝土 型式		式		懸臂式		基礎	查型式		樁基礎	
配件	伸縮縫型式		古	齒型鋼錨碇具排氣		钆鋼板 支承		、型式	型式 合成橡膠支		翼牆型式		重力式	
設計資料														
設計活載重 E		IS20	地盤	種類	粉土?	質砂土、粉土質黏土、細中砂				防落	防落橋長度		0.7米	
防震設施		ŧ.	設計	水平地表加速	度 0.23g					地震	地震分區		地震乙區	

資料來源:交通部全國橋梁管理系統

Length: 2082.8M

First Generation :Bridge : up stream

Constructed in 1974

 RC reversed circulation piles ,
Diameter of the upper portion of 10M is 90CMφand 76CMφfor the remaining part

Second Generation :Bridge : dowm stream

Constructed 1981 • same type foundation as the first • generation

Record of Retrofit

 下游側主橋因鹽害(Corrosion),故曾 於2001年抽換部分預力梁(30跨)
位於深槽之橋墩基礎(P5~P14、 P22~P25、P30計30座)以基椿補強, 每座基礎補4支90CMφ之RC基樁長 50M

屏東端引道橋

上部結構為三跨連續空心版梁橋
跨徑15M,全長277M
固定端橋墩基礎配置5支76CMφ
RC基樁,活動端為4支

Retrofit of Pier Foundation

基礎托底補強

Variation of the Route of the Main Channel

Cross River Structures in the up and down streams

資料來源:七河局

曹公圳攔河堰

資料來源:七河局

萬丹攔河堰固床工程(沖毀)

•橋梁上下游跨河結構物調查

林呈繪製自農航所正射影像底圖

●莫拉克颱風災前、災後影像圖層

雙園大橋上下游側之河道情況,可見深槽緊臨林園堤防,右岸高灘地幾近沖失

摘自國立成功大學遙測影像處理與地球環境監測實驗室

Possible Causes of Bridge Failure

Reduction of the Flow Cross Section

●河床地質與河床高程剖面調査

土層由砂、礫石及泥組成
地表下5米內為粉土質砂,5~20米為細中砂,20~40米
為粉土質黏土夾砂,40米以下為粉土質砂或細中砂

●良好承載層位於高程-40米以下

河床地質與河床高程剖面調查

CHINA ENGINEERING CONSULTANTS, INC.

Measurements
98.8.28 River Bed Inspection

底圖來源:成大衛星中心

GPR and Sonar Inspection

東港端

林邊端

東港端

Electrical Resistivity Tomography (ERT)

2009/12/11大津橋舊址施測

Marine Bottom Resistivity Survey

Sting/Swift

Smart electrodes

ERT Map of the Shuang-Yuan Bridge at P2 at August 28, 2009

UAV (unman aerial vehicle) (MD4-200)

Picturing of the Disaster Area by UAV

3D Laser Scanning (LiDar)

3D Laser Scanning

執行單位: 中國科技大學 清雲科技大學 自強工程顧問公司 已完成五座橋梁

雙園大橋
六龜大橋
新旗尾橋
旗尾橋
大津橋

Bridge Failure and Collapse Analysis

1LDWGLGTYG-2.dw2, 配置1, 2009/12/28 下午 05:18:

•

-198211_DWG_GTG-2.dv

しかはしのいの-3.dwg, 配置1, 2009/12/28下午 05:18:4

兴98211_DWG_GTVG-4.dwg, 配置1, 2009/12/28 下午 05:18 ...2

12

雙園橋橋墩設計圖

18

雙園橋橋墩模型建立

Domain of Simulation

バリアルマ (CGIAR Consortium for Spatial Information (CGIAR-CSI)

Numerical Simulation

3D Simulation of the Fluid-Structure Interaction

(hydraulic jump, Turbulence, Impact, splash...)

Loading history applied on Pier

Stream Lines

Local Scouring Simulation

Parameters :

網格: $120\times96\times30$ Domain: $40\times32\times10$ (m) Soil density: 1.8×10^3 kg/m³ Soil viscosity: 1000 Pa · s Flow speed: 6 m/s Initial water depth: 2.5 m

Dam Break Experiment

渠槽主體:2.15 m、0.16 m、0.4 m (長寬高) 蓄水槽段:0.28 m 止水條:0.02 m 斜板長度:0.71 m 斜板與底床夾角:34° 陣列排列方式:正交排列、交錯排列 陣列區大小:0.16×0.16m² 方柱尺寸:0.02×0.02m² 方柱間距:0.02m

Experimental Design

Aligned (2 cm interval)

Alternate (2 cm interval)

cond. case	Column height (m)	Initial water level (m)	Dam water level (m)	Pile arrangement
А	0.1	0.02	0.26	alternate
В	0.1	0.02	0.26	aligned
С	0.2	0.02	0.26	aligned

Water Surface Verification

cond. case	Column height (m)	Initial water level (m)	Dam water level (m)	Pile arrangement
А	0.1	0.02	0.26	alternate
В	0.1	0.02	0.26	aligned
С	0.2	0.02	0.26	aligned

74

Time = 0

Velocity & Vortex Fields

cond. case	Column height (m)	Initial water level (m)	Dam water level (m)	Pile arrangement
А	0.1	0.02	0.26	alternate
В	0.1	0.02	0.26	aligned
С	0.2	0.02	0.26	aligned

Flood Water Level vs. Factor of Safety

Platform of Risk Management

道路橋梁防災預警資訊管理系統 Road & Bridge Multi-Hazard Prevention and Mitigation Information System

Google Map

Geological Map

Satellite Images

Photos of Bridge

Before Disaster

Accumulated Precipitation

高中

Water Level and Discharge

Thanks for your attention.

