

The Study of Lifeline Serviceability: Toward More Hazard-Resilient Communities

Gee-Yu Liu

Associate Research Fellow

National Center for Research on Earthquake Engineering (NCREE), Taiwan

May 6-7, 2010 for US-Taiwan Workshop on the Advancement of Societal Responses to Mega-Disasters Afflicting Mega-Cities

Categories of lifelines

- Energy Facilities: electric power, gas and liquid fuel facilities
- Water Supply Facilities: waterworks, drainage, rivers and dams
- Transportation Facilities: roads & highways (including tunnels and bridges), railways, airports, ferries and ports
- Information Facilities: telecommunications, mass media (radio, TV, ...)

Duke, C. M. and Moran, D. F. 1975, "Guidelines for Evaluation of Lifeline Earthquake Engineering", Proc. U.S. Nat. Confer. Earthquake Eng., pp.367-376.

Common characteristics of lifelines

- high publicity and social responsibility
- service through transmission of something (materials, energy, information, etc.)
- huge economic and social impacts due to service disruption
- spatially distributed **networks** with many interconnected components
- performance (while damaged) largely affected by the topology and redundancy of system **networking**
- with a hierarchy of various subsystems and components for realizing the system functionality
- system resilience decided by the integrity, resistance and durability of subsystems and components
- interdependence upon one another (exaggeratedly increased in disastrous situations)

Example of lifeline research framework (electric power systems in US)

Incidents in electric power systems

1994 Northridge earthquake

- 2.5 million houses affected
- 93% restored after 24 hours
- Transients in power system reached Washington State, Idaho, British Columbia and Alberta affected
- 1 billion US\$ loss in power system

1995 Kobe earthquake

- 2.3 billion US\$ loss in power system
- Causing severe fires after restoration

August 14, 2003 Great Blackout

- 50 million people affected
- Rotation of suspension continued for 10 days
- Caused by shorts in 3 circuits contacting with trees
- 30 billion ÚS\$ loss reported

Sep. 12, 2005 LA Blackout

- 2 million people affected
- Caused by worker's inadequate actions

Damage in Taipower system in 1999 Chi-Chi Taiwan EQ

2009

- October 15, 2009
- Over 6.9 million Californians
- The largest earthquake drill ever
- ShakeOut scenario (USGS)
 - M7.8 earthquake on the southern San Andreas Fault
 - Recurrence Interval ~ 150 years;
 elapsed time ~ 300 years
 - The great Los Angeles area

Oil, gas and other critical facilities in ShakeOut Scenario

Water system in ShakeOut Scenario

- GIRAFFE (<u>Graphical Iterative Response Analysis</u> of <u>Flow Following Earthquakes</u>) by O'Rourke et al.
- \$87 Billion loss from fire, \$53 Billion business interruption loss from water

Highway system in ShakeOut Scenario

■ REDARSTM 2 (Risks from Earthquake DAmage to Roadway Systems) by Federal Highway Bureau

Hydraulic analysis of pressurized pipe flows for water systems

Unknowns

- Nodal heads: h_i (no. = N)
- Pipe flows: q_{ij} (no. = N_P)

Governing equations

- Continuity (no. = N, linear in q_{ij})
- Flow headloss relation: the change in the heads of two end nodes of a pipe (no. = N_P , nonlinear in q_{ii})

N nodes + N_P pipes

Modeling a pipe break

- 1. Decide the location and elevation of pipe break point
- 2. Remove the original link (pipe segment)
- 3. Add two new nodes A and B at the location of pipe break point
- 4. Add two new links connecting the original pipe segment ends to A and B, respectively
- 5. Add two new nodes A' and B' with the elevation of pipe break point and designate them as reservoirs
- 6. Add two new links connecting A-A' and B-B' and specify them with one-way check valves, respectively

Modeling a pipe leak

- 1. Decide the location and elevation of pipe leak point
- 2. Remove the original link (pipe segment)
- 3. Add a new node A at the location of pipe leak point
- 4. Add two new links connecting the original pipe segment ends to A
- 5. Add a new node A' with the elevation of pipe leak point and designate it as a reservoir
- 6. Add a new link connecting A and A' and specify it (1) as a fictitious pipe with a diameter of corresponding pipe leak model, and (2) with a one-way check valve

The water system of the Taipei Water Department (TWD)

Serving 1.51 million customers or 3.85 million people

Daily water supply: 2.5 million tons

Total pipe length: 7,153 Km (including customer pipes)

	Nodes	Pipes	Pumps	Tanks	Reservoirs	Pipe Length (m)
01	3,254	3,376	40	10	0	171,359
02	2,289	2,366	18	3	0	102,684
- 03	4,288	4,421	27	2	0	143,565
04	1,769	1,822	18	2	0	68,446
05	2,591	2,673	10	2	0	116,349
06	3,691	3,796	17	2	0	142,553
07	4,985	5,127	32	3	1	193,524
08	2,338	2,394	5	1	0	98,039
09	587	601	12	2	0	28,829
10	2,716	2,799	20	3	0	130,933
Total	28,508	29,375	199	30	1	1,196,281

M7.5 Hsincheng fault scenario

Taiwan Strong Motion Instrumentation Program (TSMIP)

Started in 1990, CWB has installed and maintained more than 700 strongmotion stations around Taiwan:

- 109 real-time stations
- 650 free-field strong motion stations
- 51 monitored structures
- digital instrumentation

Early Seismic Loss Estimation (ELSE)

TREIRS (Taiwan Rapid Earthquake Information Release System) by CWB

- Obtain point-source parameters (M, E_x, E_y, D)
 within seconds
- Send earthquake alerts to all clients

ESLE by NCREE

- Auto-trig after receiving email from CWB
- Obtain estimation results within seconds
 - Dispatch short messages through mobile phones to emergency personnel
 - Send email to provide more information
- Auto-output useful maps and tables

CWB email service by TREIRS

(Taiwan Rapid Earthquake Information Release System)

Pre-calculated Seismic Scenario Database (SSD)

Source locations:

E119°-123°, N21°-26°

Grid size: 0.2°×0.2°

Focal depth: 5, 15, 25, 35, 45, 55km

Line source model

35 combinations of (M, Orientation)

斷層開裂方向

- (1) 0度
- (2) 0、90度
- (3) 0、60、120度
- (4) 0、45、90、135度
- (5) 0、30、60、90、120、150度

Application of Early Seismic Loss Estimation (ESLE) to highway bridges

Example of ESLE Application: M6.3 EQ on March 4, 2010

- Aere typhoon in 2004
- No physical damage to water system
- 3.2 million people in Taoyuan area out of water for 17 days!

2008 Chinese winter storms (meteorological hazard)

- Jan. 25 to Feb. 6
- 300,000 troops and 1.1 million reservists deployed for relief efforts
- transportation and electricity badly affected

Undersea cables: new type of damage/disaster

Heng-Chun EQ Dec. 26, 2006

Concluding remarks

- Key issues in hazard-related lifeline research
- Cases of lifeline performance under hazardous condition

Barriers in the way:

- lessons not learnt
- cross-disciplinary gaps not filled
- knowledge of rare and extreme events and their consequences limited

Thanks for your attention!