TAIWAN HIGHWAY BRIDGE ASEISMIC EVALUATION

Tyng-Lo Chang1 · Dyi-Wei Chang2 · Ming-Yuan Cheng3 · Shu-Jen Chi1

ABSTRACT

Since Taiwan is located in a seismic hazard region, the seismic assessment and retrofit of older bridges is very important. In order to ensure the safety of traffic network, a project has been carried out to assess the seismic resistant capacity over 2,200 bridges on the Taiwan Roadway System. The assessment process is divided into two stages. The first stage is the preliminary evaluation which all the bridges will be evaluated using simple seismic review sheets to determine the evaluation points. Further investigation shall be carried out if the evaluation point is greater than 60 points. On the second stage, 5% of total bridges will be selected to perform the detail analysis. The state-of-the-art nonlinear static analysis (pushover analysis) is adopted to calculate the seismic resistant capacity of the bridge. Based on the assessment results, the retrofit strategy will be established. This paper will illustrate the assessment process and introduce the preliminary results.

Keywords: seismic assessment, pushover, SAP-2000, plastic hinge

INTRODUCTION

Taiwan is located in the high seismic hazard zone and has been experienced a lot of earthquakes. Since the Chi-Chi earthquake, the seismic assessment for the existing bridges has been becoming a major issue for the bridge engineering. In the past few years, all the bridge management authorities have focused on the retrofitting of those vulnerable bridges to avoid bridge collapses if there is another big earthquake shaking Taiwan again. In the Chi-Chi earthquake, most of the damaged bridges (Picture 1) were located near the fault and were under the supervision of Directorate General of Highways, MOTC. Therefore, a project of seismic retrofitting feasibility study for Taiwan Provincial Highway bridges was issued by Directorate General of Highways, MOTC, and China Engineering Consultants, Inc. is responsible to carry out the project now. Totally over 2,200 bridges will be evaluated in the project. In order to perform the seismic assessment effectively, it is important to establish a quick and accurate assessment procedure. The seismic assessment procedure is divided into two stages, a preliminary evaluation and detail analysis. At the first stage, simple seismic review sheets, one for bridge falling evaluation and one for ductility/strength evaluation are used to assess all the bridges. Then the second stage 5% of the bridges, approximate 110 bridges, will be selected to conduct the detail pushover analysis. Based on the evaluation results, adequate retrofitting schemes will be proposed and the approximate retrofitting cost will be estimated. With all these information suggested, a national construction plan will be proposed and submitted to the Client for the annual budget planning of the Taiwan Highway Bridges seismic retrofitting.

1 Bridge Engineer, Structural Engineering Department II, China Engineering Consultants, Inc., Taipei, Taiwan tlchang@ceci.org.tw, sjchi@ceci.org.tw
2 Senior Vice Present, China Engineering Consultants, Inc., Taipei, Taiwan dwchang@ceci.org.tw
3 Manager, Structural Engineering Department II, China Engineering Consultants, Inc., Taipei, Taiwan sbvice@ceci.org.tw
In the project, there are more than 2,200 bridges needed to be evaluated. Simple seismic review sheets have been developed for the preliminary seismic evaluation. There are two separate review sheets, one for the bridge falling assessment, and the other one for the ductility/strength capacity assessment. The bridge will be evaluated according to different items and be determined in different weighted points. For both review sheets, the evaluation items are classified into three categories which are site condition, structural system and structural detail. For the ductility/strength capacity assessment, the category of site condition consists near fault condition, soil condition and liquefaction potential. Skew angle, pier size ratio, structural redundancy, pier height ratio and scouring depth are considered in the structural system category. And for the structural detail category, plastic hinge details and reinforcement details for pier column are included. The strength/ductility evaluation seismic review sheet is shown in Figure 1. The review sheet for bridge falling assessment is similar to the strength/ductility evaluation review sheet. Except for the structural detail category, bearing seat length is taking into account instead of reinforcement detail. For those bridges graded over 60 points, detail analysis are necessary, in between 30 ~ 60 points further investigation might be needed. And for bridge graded under 30 indicates that the bridge is in fine condition at the preliminary evaluation stage. In order to verify the accuracy of the review sheet, the data of Chi-Chi earthquake were used to calibrate the weight in the review sheet to conform to the actual damages.

![Seismic Review Sheet — Strength/Ductility Evaluation](image)

PRELIMINARY SEISMIC EVALUATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Weight</th>
<th>Evaluation Content</th>
<th>Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>0201</td>
<td>Site Condition</td>
<td>Near Fault</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>0202</td>
<td>Soil Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0203</td>
<td>Liquefaction Potential</td>
<td>High</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>0204</td>
<td>Skew Angle, ϕ</td>
<td>4</td>
<td>w = ϕ αt x 1.0</td>
<td></td>
</tr>
<tr>
<td>0205</td>
<td>Structural</td>
<td>Pier Size Ratio, R</td>
<td>6</td>
<td>If R ≥ 2.5, w = 1.0, if R < 1.5, w = 0.5</td>
</tr>
<tr>
<td>0206</td>
<td>System</td>
<td>Pier Height Ratio, r</td>
<td>4</td>
<td>If r ≤ 1.5, w = 1.0, if 1.0 < r ≤ 1.5, w = 2r</td>
</tr>
<tr>
<td>0207</td>
<td>Redundancy</td>
<td>Non</td>
<td>6</td>
<td>Non-1.0</td>
</tr>
<tr>
<td>0208</td>
<td>Scouring Depth</td>
<td>24</td>
<td>w = 2.0 - 2.0 (HAF/B) - 3.0 + 1.40</td>
<td></td>
</tr>
<tr>
<td>0209</td>
<td>Column Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0210</td>
<td>Plastic Hinge Detail</td>
<td>Non-Satisfy</td>
<td>8</td>
<td>Non-Satisfy</td>
</tr>
<tr>
<td>0211</td>
<td>Reinforcement Detail</td>
<td>Good</td>
<td>4</td>
<td>Good</td>
</tr>
<tr>
<td>0212</td>
<td>Deterioration</td>
<td></td>
<td>8</td>
<td>Non-Fine</td>
</tr>
<tr>
<td>0213</td>
<td>Pier Bottom Lapping</td>
<td></td>
<td>8</td>
<td>Non-Fine</td>
</tr>
<tr>
<td>0214</td>
<td>Wall Type</td>
<td>Plastic Hinge Detail</td>
<td>Non-Satisfy</td>
<td>8</td>
</tr>
<tr>
<td>0215</td>
<td>Reinforcement Detail</td>
<td>Good</td>
<td>6</td>
<td>Non-Fine</td>
</tr>
<tr>
<td>0216</td>
<td>Deterioration</td>
<td></td>
<td>8</td>
<td>Non-Fine</td>
</tr>
<tr>
<td>0217</td>
<td>Bearing Condition or other Abnormal</td>
<td></td>
<td>8</td>
<td>Bearing Strength, Degree of Damage</td>
</tr>
</tbody>
</table>

Total Points 100
The bridge engineers will go to the bridge site for each individual bridge to conduct the evaluation, and fill out the review sheets for each bridge. A standard operation procedure (SOP) for site evaluation and a guideline for review sheet filling are also prepared to guide the engineers to fulfill the field tasks.

PUSHOVER ANALYSIS

In 1996, ATC-40 established a procedure to reveal the structural capacity based on the capacity spectrum method. The capacity spectrum can be determined from the pushover analysis. In addition, the demand spectrum obtained from elastic spectrum modified by a procedure of effective viscous damping, equivalent to the nonlinear response, was used to present the inelastic structure behavior under a specific ground motion. The intersection of capacity spectrum and inelastic spectrum, named as performance point, can be located through an iterative calculation.

A well-defined plastic hinge should be the key point to have an accurate pushover analysis result. The commercial software package SAP-2000 is used to perform the pushover analysis. Although SAP-2000 provided some convenient defaulted defining for the characteristic of plastic hinge of RC member, it was found that the analytical results sometimes are not quite matched with the time history analysis. Five points A~E are needed to be input to define the plastic hinge as shown in Figure 2. Where section AB represents the linear behavior and sections B to E are the nonlinear parts. In order to catch the actual behavior of RC columns, and get better simulation for the nonlinear behavior, a modification of the defaulted M3 model in SAP-2000 has been made. The corresponding three different failure modes, namely shear failure, bending to shear failure and bending failure are redefined, shown in Figure 3. The modified plastic hinge characteristic is used to replace the defaulted M3 model in SAP-2000. With this modification, it would help the pushover analysis for the bridge seismic assessment with efficiency as well as accuracy. Pre-processor and post-processor are developed for the linking of pushover analysis. The pre-processor determines the modified plastic hinge properties, while as the post-processor could convert the capacity curve from the pushover analysis to a graphic output of the structural capacity spectrum.

The basic objective of the ATC-40 is to evaluate the structural performance under a given seismic demand. General speaking, the ACT-40 scheme seems more suitable for the design task rather than the evaluation task. A new methodology has been proposed by Prof. Sung in 2003. Since the bridge does no fail, the structural performance point should be always locating right on the curve of the capacity
spectrum. Every single performance point along the capacity curve can be determined as long as the pushover analysis has completed. Therefore, it can be used as “input” to calculate the corresponding seismic demand as “output”, in such way that the complicated iterations can be eliminated. The performance point is located at the interaction of the capacity spectrum and the inelastic demand spectrum, as shown in Figure 4, and thus meets the mutual property of both spectrums. Such that spectral acceleration a_{pi} and displacement d_{pi} for the capacity spectrum would be the same as $(S_a)_{inelastic}$ and $(S_d)_{inelastic}$ for the inelastic demand spectrum. The effective damping β_{eff} includes the inherent damping β_{basic} in the structure and equivalent viscous damping β_o taking into account for the energy dissipation of the hysteretic loop.

According to ATC-40, β_{eff} is calculated as

$$\beta_{eff} = \beta_{basic} + \beta_o = \beta_{basic} + \frac{63.7 \kappa (a_{pi} d_{pi} - d_{pi} a_{pi})}{a_{pi}^2 d_{pi}}$$

(1)

Where κ is the damping modification factor to reflect the actual hysteretic behavior of the structure, and a_y and d_y is the spectral yield acceleration and displacement, respectively. The relationship between PGA and the spectral acceleration a_{pi} then can be expressed as

$$PGA = \frac{a_{pi}}{(S_a)_{inelastic} \times C_D}$$

where

$$C_D = \frac{(S_a)_{inelastic}}{(S_a)_{elastic}} = \frac{1.5}{40 \beta_{eff} + 1} + 0.5$$

(2)

![Figure 4. Capacity and the demand spectrum](image)

DETAIL ANALYSIS

The bridge seismic detail analysis procedures are described as follows:

Step 1: Set up the bridge analysis model.

Step 2: Calculate the moment curvature of pier column, determine the failure mode, i.e. shear failure, bending to shear failure or bending failure. Define the plastic hinge for SAP2000.

Step 3: Perform the push-over analysis, establish the capacity curve, convert the capacity curve to the capacity spectrum.

Step 4: Calculate the pier column yielding ground acceleration S_{ay}

Step 5: Calculate the effective damping β_{eff}, the damping correction factor C_D, then the performance point ground acceleration

$$Z = \frac{a_{pi}}{C(T) \times C_D (\beta_{eff})}$$

(3)

Step 6: Output the envelope of pier top and bottom reaction forces from pushover analysis.

Step 7: Check the bearing strength, foundation strength and stability.
Step 8: Determine the ground acceleration of first damage case among bearing, pier column and foundation.

CASE STUDY

Li-Kun bridge located in Taiwan No.3 Provincial Highway is a P.C.I girder type bridge with 43 units (Picture 2). The span arrangement is 3@35+16@40+(20+6@40+20)+15@40+25m, and the total length of the bridge is 1620m. Li-Kun Bridge was widened in 1992. The old part of bridge was built in 1977, while the new part was built in 1992, so that the bridge was designed according to two different seismic design codes. The deck width of old bridge and new bridge is 8.1m and 17.9m, respectively. And now the total width of the deck is 26m. The pier for old bridge is column type with average height 8.5m and wall type pier for widened bridge in average 10m high, the reinforcement details of pier columns are shown in Figure 5. The foundation of old bridge is 45 x 45cm RC piles, and the widened bridge is caisson foundation. The structure is simply supported with hinge on one pier and roller on the other pier.

![Picture 2. Li-Kun Bridge](image)

![Figure 5 Li-Kun bridge pier column detail drawings](image)

The analysis model for the evaluation unit is shown in Figure 6 with a typical span length of 40m. The model includes 10 P.C.I. girders, deck slabs, intermediate diaphragms and piers. The foundation is simulated as fixed condition. Figure 7 shows the SAP-2000 M3 plastic hinge input data box. The predetermined the pier column plastic hinge is shown in Figure 8. The capacity curve from pushover analysis is shown in Figure 9. And the Figure 10 is the converted capacity spectrum from capacity curve. The widened bridge has higher capacity than the old bridge. The base shear capacity is 415 T and 224T for new bridge and old bridge, respectively. The top curve represents the capacity of entire
bridge, which is 639 T equal to the sum of widen bridge and old bridge. The capacity spectrum of the bridge is shown in Figure 11 with three different κ values. The yielding PGA a_y is 138g from the analysis and taking $\kappa=1/3$ max. PGA a_u is 0.354g. Since there are lots of uncertainties for the pier reinforcement detail, the plastic hinge of pier might not be fully developed. The seismic resistant capacity of the bridge is conservatively chosen to be $a_y (0.138g)$ plus 20% of the plastic capacity that equals to 0.181g.

Figure 6. SAP-2000 analysis model
Figure 7. SPA-2000 M3 plastic hinge input data box

Figure 8. Modified pier column plastic hinge
CONCLUSION

A simple and accurate seismic assessment procedure has been introduced. By using a simple seismic review sheet for quick seismic preliminary evaluation, one can screen out the potential candidate bridges for the detail analysis. A state-of-the-art pushover analysis method is adopted to calculate the seismic resistant capacity of the bridge. Few modifications have been made for pushover analysis to get more accurate results. At the end of this project, a national construction plan which includes retrofitting cost estimation and economics benefit evaluation will be proposed based on the seismic assessment results in the project.
ACKNOWLEDGEMENTS

Special thanks are given to Prof. I-Chau Tsai at National Taiwan University and Prof. Yu-Chi Sung at National Taipei University of Technology for their assistance on the development of seismic review sheets and pre-processor/post-processor of pushover analysis.

REFERENCES

